• For more information about organizing maps, see organizing mappings.

    有关映射组织更多信息参见组织映射

    youdao

  • Working with Self Organizing Maps - How do I interpret the results?

    使用组织映射——如何解释这些结果

    youdao

  • Common approaches to unsupervised learning include k-Means, hierarchical clustering, and self-organizing maps.

    无监管学习常见方法包括k - Means分层集群自组织地图

    youdao

  • Introducing diffusing and growing self-organizing maps (DGSOM), we propose a new algorithm called self-organized LLE and give some theoretical analysis.

    引入扩散生长型自组织神经网络模型(DGSOM算法,在深入研究LLE的基础上提出新的组织LLE算法给出理论分析

    youdao

  • It implements two original algorithms specifically designed for clustering short time series together with hierarchical clustering and self-organizing maps.

    实现了两个时间序列聚类与聚类自组织映射原始算法

    youdao

  • It enables you to easily manage collections of related maps by graphically organizing them into logical collections of systems.

    通过图形方式将它们组织系统逻辑集合中,可以帮助轻松地管理相关映射的集合。

    youdao

  • Topic Maps [ISO International Standard, number 13250] provide a system for organizing information and are in some ways a competing Semantic Web technology to RDF.

    TopicMaps [iso国际标准编号13250]提供组织信息系统某些方面rdf竞争的一种SemanticWeb技术

    youdao

  • Concept maps were tools for organizing and representing knowledge.

    概念用来组织表征知识的工具

    youdao

  • A method that applies the clustering function of SOFM (Self-Organizing Feature Maps) network is proposed for autonomous star pattern recognition.

    介绍了种利用自组织特征映射(SOFM)网络聚类功能进行全天星图识别的方法。

    youdao

  • An autonomous star pattern recognition method using the tri-star clustering function of SOFM (Self-Organizing Feature Maps) network is described.

    介绍一种利用SOFM(组织特征映射)网络聚类功能进行全天星图识别算法

    youdao

  • To facilitate clustering analysis and visualization of data, the Emergent Self-Organizing Feature Maps (ESOM) and a boundless U-matrix are needed.

    本文通过利用涌现自组织特征映射神经网络数据进行聚类分析通过无边界u矩阵实现可视化功能

    youdao

  • To facilitate clustering analysis and visualization of data, the Emergent Self-Organizing Feature Maps (ESOM) and a boundless U-matrix are needed.

    本文通过利用涌现自组织特征映射神经网络数据进行聚类分析通过无边界u矩阵实现可视化功能

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定