Operator theory, operator algebras, and applications.
算子理论,算子代数及其应用。
Finally, the essential commutant of tensor product of operator algebras is discussed.
最后讨论了张量积代数的本性换位。
Functional Analysis and Operator Algebras; Quantization Methods and Path Integration; Variational Techniques.
泛函分析和算子代数;量子化方法和路径积分;变分技术。
The theory has evolved to describe the relationship between finite groups, modular forms and vertex operator algebras.
理论已经逐步形成描述在有限群,标准化的形式和顶点算符代数之间的关系。
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
引进t _导子的概念,刻划了一般代数和算子代数上的T _导子的特征性质。
And give general forms of every class of degenerate operator algebras by the representations of this algebra and constructions of symmetric ideals.
并通过算子代数的分解以及对称理想的结构给出各类退化算子代数的一般形式。
In this paper, some properties of semisimple generalized vertex algebras (resp. semisimple generalized vertex operator algebras), for example the decompositions of these algebras;
讨论了半单广义顶点代数(相应地半单广义顶点算子代数)的若干性质,例如:这些代数的分解;
Lie algebras of derivations of n-differential operator algebra.
元微分算子代数的导子李代数结构。
Lie algebras of derivations of n-differential operator algebra.
元微分算子代数的导子李代数结构。
应用推荐