First, let's do a one-dimensional case.
首先是一个一维案例。
Let's take a one-dimensional case.
举个一维的例子。
This method can be used to calculate the degradation of image quality as a result of any kind of image motion in the image plane, and easily used in the case of one dimensional motion.
该方法可以计算任何形式的图像运动导致的成像质量的下降,而且可以很方便地应用到一维运动的情况。
Finally, the influences of the measurement noise and the fractional order error to the stability of this algorithm are analyzed in one-dimensional case, respectively.
最后在一维情形下分析了探测噪声和光路位置调整误差对算法稳定性的影响。
Applied to the one-dimensional case, the theory gives exact result for the free energy.
把所得结果应用到一维情形,得到的自由能是严格正确的。
Furthermore, one-dimensional period isotropic gratings is discussed as degenerated case.
并且将一维各向同性周期光栅作为它的退化情形进行了讨论。
Compared with the traditional three-dimensional reconstruction system, this one can reconstruct the whole three-dimensional model with low distortion even in the case of litter user interaction.
与传统的三维重建系统相比,该系统能够在用户交互很少的情况下进行三维重建,且能重建出完整的低失真的三维模型。
The most complex case in which every channel can transmit only one-dimensional information is studied, and an recursive designing method is proposed.
讨论一种最复杂的交换,即每一条通道只能传递一维信息。给出了递推的设计算法。
Combined with adaptive arithmetic coding scheme, SPIHT algorithm modified for the one-dimensional case could compress signals with the.
将SPIHT算法与自适应算术编码结合应用于一维漏磁信号压缩,可以实现高压缩比、多种码率压缩编码。
In this paper, the density function of n-dimensional P-norm distribution is derived. Laplace, Normal, Rectangular and Degenerate ones are the specific case of one-dimensional P-norm distribution.
本文构造了n维p -范分布的密度函数,使拉普拉斯分布、正态分布、均匀分布与退化分布均为一维p -范分布的特例。
In this paper, the density function of n-dimensional P-norm distribution is derived. Laplace, Normal, Rectangular and Degenerate ones are the specific case of one-dimensional P-norm distribution.
本文构造了n维p -范分布的密度函数,使拉普拉斯分布、正态分布、均匀分布与退化分布均为一维p -范分布的特例。
应用推荐