What's the prototype of a function?
什么是一个函数的原型呢?
This is the creation of a function.
这就是创建函数。
Well, you take the gradient of a function.
作出一个函数的梯度。
We've added this notion of a function.
我们明白了函数的概念。
My surface is given by the graph of a function.
我们的曲面是由一个函数图像给出的。
N_RBRAC - right bracket, end of a function.
N_RBRAC是右括号,即函数的结束部分。
N_LBRAC - left bracket, start of a function.
N_LBRAC是左括号,即函数的开始部分。
If it does, it represents the end of a function.
如果等于该值的话,那么它表示函数的结束部分。
You know how to compute a double integral of a function.
要懂得如何计算一个函数的二重积分。
x It's the average value of a function, x in the region.
就是x乘以函数做积分的均值,区域中的。
OK, so that's an example of a contour plot of a function.
这就是一个关于函数等高线图的例子。
subtle issue about "which version" of a function it calls.
(所以)不存在这个函数调用“那一类型”的功能。
The prototype of a function can be defined in header files.
可以在头文件中定义函数原型。
The area R is the double integral over R of a function one.
区域R的面积是函数1在R上的二重积分。
Operation - Name of a function or procedure to process.
operation-要处理的函数或过程的名称。
Therefore, it cannot retrieve the return value of a function.
因此,不能获取函数的返回值。
And, it would be going towards higher values of a function.
它应指向函数值较大的一边。
And it gives us the direction of fastest increase of a function.
它也给我们指出函数,变化得最剧烈的方向。
That was our first example of a function of two variables possibly.
这是二元函数中的第一个例子。
The graph of a function one is just a horizontal plane at height one.
函数1的图像就是高度为1的水平面。
So, here I have a contour plot of a function, and I have a blue vector.
我这里有一个函数的等值线图,还有一个蓝色的向量。
The value of the last expression is the default return value of a function.
最后一个表达式的值是默认的返回值。
But they won't be the level curves of a function for which this is the gradient.
但它们不一定是,某个以该向量场为梯度的函数的等值线。
And, each of them has a number next to it which tells us the value of a function there.
每条线都被一个数标出,每个值都代表了一个函数值。
Only the string field is significant; it is the name of a function that is the main program.
只有字符串字段是至关重要的;它表示构成主程序的函数的名称。
An operation is a programmer's tool, offered to them in the familiar guise of a function call.
“操作”是给程序员的工具,它们打扮成程序员熟悉的函数调用。
The definition of an interface of a function is quite direct and intuitive -- just think about
定义功能接口非常直接和直观——只需考虑
So, if the gradient of a function is a vector, the divergence of a vector field is a function.
如果说函数的梯度是向量,那么向量场的散度就是函数。
But then, when we are looking for the minimum of a function, well, it is not at a critical point.
接着,我们找最小值点,会发现它不是临界点。
Sometimes poor performance can be a result of a function being used more frequently than expected.
有时候,不必要地频繁调用一个函数会造成性能问题。
应用推荐