Sufficient conditions for boundedness of solutions of nonlinear delay differential equations with impulses are established by using impulsive integral inequalities with a deviation.
利用时滞脉冲积分不等式,给出了一类非线性的脉冲时滞微分方程的解有界性的充分条件。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
应用推荐