Differential algebraic strategy can be applied to address the dynamic feedback control problems effectively in the nonlinear systems, with Flatness an important concept in the differential algebra.
微分代数采用动态反馈控制实现一类非线性系统的控制,平滑性是微分代数的重要概念。
This paper discusses theoretical models and numerical experiments of waveform relaxation methods for solving nonlinear differential-algebraic systems of index-3.
本文探讨非线性指标- 3微分-代数系统的波形松弛算法所涉及的理论模型和具体算例的求解。
The equations which describe many trajectory control problems naturally form nonlinear semiexplicit differential algebraic systems.
描述许多轨道控制问题的方程通常构成非线性半显式的微分代数系统。
The equations which describe many trajectory control problems naturally form nonlinear semiexplicit differential algebraic systems.
描述许多轨道控制问题的方程通常构成非线性半显式的微分代数系统。
应用推荐