Chapter 3 is devoted to the study of the convergence theory of a dual algorithm for unconstrained minimax problems.
第3章给出无约束极大极小问题的一个对偶算法的收敛理论。
Minimax problem is a kind of important optimization problems.
极小极大问题是一类重要的非光滑优化问题。
On the basis of minimax algebra theory, this paper provides an algebra method of solving countable stages decision problems in the dynamic programming.
本文根据极大极小代数理论,给出了一种用以求解动态规划中有限多阶段决策问题的代数算法。
Minimax problem is a sort of non-differentiable optimization problem and the entropy function method provides a efficient approach to solve such kind of problems.
极大极小问题是一类不可微优化问题,熵函数法是求解这类问题的一种有效算法。
A method for solving minimax problem is presented, which also can be used to solve linear or constrained optimization problems.
提出了一类解极小极大问题的熵函数法,这种方法也可用来解线性或约束优化问题。
In the problems of minimax tree search, what we are looking for is often the optimal branch at the root node.
在极大极小树搜索时,我们经常寻找的是根节点的最优分支。
On theoretical aspect, we knew that the minimax problem and the multilevel programming problems can be reformulated into MPEC problems.
在理论方面我们获知,极小极大问题和多层优化问题都可转化为MPEC问题来求解。
These three papers study and develop, for different fields and practical problems, the gibbs models based on the minimax entropy principle.
这三篇文献从不同的应用场合和建模方法介绍了基于最小最大熵准则的吉布斯模型是如何成功设计和应用的。
These three papers study and develop, for different fields and practical problems, the gibbs models based on the minimax entropy principle.
这三篇文献从不同的应用场合和建模方法介绍了基于最小最大熵准则的吉布斯模型是如何成功设计和应用的。
应用推荐