A micro robot fish is presented.
论述了一种微型机器鱼。
The paper proposes a micro robot model.
提出了一种微型机器人模型。
This kind of the micro robot can move in micro tubes full of fluids.
此种微型机器人能够在充满液体的弯曲的微型管道内运行。
The results indicate that the micro robot can be suspended to move q...
结果表明,此种微型机器人能以较快速度在管内悬浮运行。
A new 3d position measurement method of a wall climbing micro robot has been researched.
提出了一种微小爬壁机器人三维位置测量的新方法。
In the recent year, the micro robot soccer emerges as a new embranchment in the field of brainpower robot.
近几年来,在智能机器人的领域,又出现了一个新的分支,这就是足球机器人。
This paper deals with the controlling circuit of moving which is designed by the acting of walking type micro robot.
本文主要介绍了根据微小步行机器人动作过程设计的动作控制电路。
The technique of template matching algorithm is used flexibly in the micro robot system to implement the robotic vision.
模板匹配技术在微型机器人系统中的灵活运用解决了系统参数提取的实时性问题,实现了机器人视觉。
The swimming micro robot is a new kind of robot which is driven by micro drivers and simulates the aquatic motion mechanism.
泳动微机器人是采用微驱动器致动、模仿水生动物游泳的方式推进的新型微机器人。
In this dissertation, by using giant magnetostrictive thin films (GMF) as actuator, a biomimetic swimming micro robot is developed.
本文以超磁致伸缩薄膜(GMF)为驱动器,研制了一种外磁场驱动的无缆仿生游动微型机器人。
Based on the operating principle of rotary viscometer, the dynamical performance experiment rig of spiral micro robot was fabricated.
基于旋转黏度计工作原理,建立内窥镜机器人动力学性能实验台。
A novel drive mechanism named micro-elastic mesh wheel was developed to transfer power between the cross axes in a limited space by in-tube micro robot.
为解决管道微机器人在微小空间内的交叉轴传动问题,研制了微小弹性啮合轮的传动机构。
The vibration model of micro robot which is driven by intelligent material and moves in liquid is the important basis to establish and study its dynamic performance.
采用智能材料驱动的、在液体中运动的微机器人的振动模型是建立和研究其动力学模型的重要基础。
A pair of functionally gradient piezoelectric cantilevers was used to fabricate a microgripper, which is used as the micromanipulator of micro robot operating system.
利用梯度功能压电执行器设计和制作了双悬臂梁结构的微夹钳,用作微型机器人操作系统的操作手。
The nonlinear theoretical model of the spiral-type micro robot was constructed after coupling the models of operating environment with the innovation Reynolds equations.
将运行环境的非线性数学模型耦合到螺旋内窥镜机器人理论分析模型中即得螺旋内窥镜机器人非线性仿真分析模型。
Electromagnetic micromotor is an ideal micro actuator for MEMS, micro robot and micro movable elements, because of it's large output torque, long lifetime and easy in practical applications.
电磁型微马达以其输出力矩大、运行寿命长、易于实用化的优点成为微机电系统、微型机器人和微型可动部件理想的驱动器。
The theory of Impact Drive Mechanism (IDM) is proved through comparing the results of two analysis methods, and the feasibility about pipe motion micro robot adopting the IDM theory is proved.
通过对两种方法的分析结果对比,验证了惯性冲击式运动原理的正确性,以及该原理用于管内移动微小型机器人驱动是可行的。
The in-pipe micro robot is an important research direction in the field of micro-robot. The efficiency and accuracy of pipe inspection may be increased dramatically by using in-pipe micro robots.
微型管内机器人是微型机器人领域的一个重要的研究方向,使用微型管内机器人可以提高管道检测的效率和精确度。
Through these experiments, we find that the micro actuators vibrate in high frequency under the action of the alternating magnetic field, which make the micro robot model move forward in the water.
实验表明,该模型在交变磁场的作用下,微执行器将做高频率划动,使水下微机器人模型能够在水中产生运动。
A simple parameter extraction algorithm is used to meet the realtime control of micro robot. The parameter of position, velocity, direction and acceleration of micro robot are solved out at real time.
为了满足机器人实时控制的要求,采用简单实用的机器人运动参数粗略提取方法,实现了机器人当前位置、运动速度和方向以及运动加速度等参数的实时提取。
Using a micro-robot, by contrast, might involve only one incision and smaller surgical instruments.
相比之下,使用微型机器人可能只需要一个切口和更小的仪器。
The condition of realizing the two kinds of given function of new micro piping robot in theory was analyzed.
本文从理论上分析了实现新型微管道机器人这两种特定功能的条件。
When the fluid is liquid and its speed is more than 0.3l, the micro piping robot can move in pipe and obtains some electric power when it stops.
当流体为液体、流速的值大于0.3L时,微管道机器人能在管内运动,并且其静止时能从管内流体获得一定的电能。
As one of the common frontier technology of IC manufacturing, micro-manufacturing, and robot manipulation, microassembly and micromanipulation have been researched widely recently.
微装配是电子制造、微制造、机器人操作等制造领域的共性前沿技术之一,近年来得到了广泛的研究与应用。
A new method for driving a micro capsule robot moving in vitro was presented.
介绍了一种新的旋转磁场驱动胶囊微机器人运动的方法。
It mainly includes industry micro-pipe robot and medical body micro-pipe robot.
它主要包括工业管道微机器人和医用人体管道微机器人。
A kind of driving mechanism of micro-robot utilizing the traction force produced by the rotation of screws was studied.
研究一种利用螺旋旋转产生牵引力的微型机器人驱动机构。
Because restricted by homework space, it is very difficult for micro-robot to adopt the routine drive way and drive organization, it must work out the novel drive way and corresponding driver.
由于受作业空间的限制,微机器人很难采用常规的驱动方式和驱动机构,必须研究出新颖的驱动方式和相应的驱动器。
Theoretical analysis and experiments indicate that the micro-robot can swim forward and back off smoothly and rapidly in the tenuous glass pipe full of liquid.
理论研究与实验结果表明,该机器人能以较快速度在平置的充满液体的微细玻璃管道中游动前进和悬浮倒退。
The transmission branch chain of micro-robot adopts flexible hinged minute-displacement enlarging mechanism and USES thin steel wires instead of global hinges.
微机器人的传动支链采用柔性铰链微位移放大机构,并用细钢丝代替球铰链。
应用推荐