We introduce concepts of diagonal quasi-convexity and quasi-concavity in hyperconvex metric spaces.
我们介绍了超凸度量空间中对角拟凸和拟凹的概念。
The relation between generalized metric spaces and posets is treated.
广义度量空间和偏序集都具有函数空间。
The theory of generalized metric Spaces is an important question of general topology.
广义度量空间理论是一般拓扑学研究的重要课题。
In this paper, some results on fixed points of homeomorphic maps in metric Spaces have been obtained.
本文给出了度量空间中某些同胚非扩张映射不动点存在的充分必要条件。
The aim of the present paper is to establish three common fixed point theorems in probabilistic metric Spaces.
本文的目的是在概率度量空间建立三个公共不动点定理。
In this thesis, some problems for nonlinear operators and their applications in probabilistic metric Spaces are studied.
本文主要研究概率度量空间中非线性算子的理论与应用。
In the present paper some theorems for variational inequalities and minimax inequality are obtained in hyperconvex metric spaces.
摘要文章给出了超凸度量空间中的一些变分不等式定理和极大极小不等式定理。
In this paper, We prove a fixed theorem on two metric spaces. and this fixed point theorem is generalized on two K-metric Spaces.
本文证明了一个关于两个距离空间的不动点定理,并将此结果推广到两个K -距离空间。
In this paper, we introduce the concept of the Z-M-PN space, and obtain some new fixed point theorems in probabilistic metric Spaces.
本文提出了Z - M - PN空间的概念,在概率度量空间中我们得到了若干新的不动点定理。
Two-and threed imensional euclidean spaces are metric spaces as are inner product spaces vector spaces and certain topological spaces.
二维和三维的欧几里德空间是度量空间。另外,内乘空间、向量空间以及某些拓扑空间等也都是度量空间。
Two-and three-dimensional Euclidean Spaces are metric Spaces as are inner product Spaces vector Spaces and certain topological Spaces.
二维和三维的欧几里德空间是度量空间。另外,内乘空间、向量空间以及某些拓扑空间等也都是度量空间。
Two - and three-dimensional Euclidean Spaces are metric Spaces, as are inner product Spaces, vector Spaces, and certain topological Spaces.
二维和三维的欧几里德空间是度量空间。另外,内乘空间、向量空间以及某些拓扑空间等也都是度量空间。
In this paper we present a convex structure for 2-metric Spaces, and from this we get a fixed point theorem for a kind of nonexpansive mappings.
本文对于2 -距离空间引入了凸结构的概念,并由此得到一类非扩张映象的不动点存在定理。
In Section 1 we discuss some basic properties of weak metric Spaces and obtain two fixed point theorems for self-mappings in weak metric Spaces.
第一部分讨论了弱距离空间的一些基本性质并给出了弱距离空间中自映象的两个不动点定理。
It begins with the properties of the real Numbers and continues with a rigorous treatment of sequences, series, metric Spaces, and calculus in one variable.
它从实数的特性开始并且继续严格的处理顺序,系列,米制空间和在一个变量的微积分。
Some convergence theorems of iterative sequence for quasi-nonexpansive mappings and continuous mappings are also obtained in the strictly convex metric Spaces.
同时给出了严格凸度量空间上拟非扩张映象、连续映象迭代序列的收敛性定理。
This paper brings forward the concept of category on probabilistic metric Spaces and proves that complete probabilistic metric Spaces is a set of the second category.
本文提出了概率度量空间纲的概念,并证明了完备的概率度量空间是概率第二纲集合。
We utilize the results in Chapter 2 and Chapter 3 to prove the fixed point theorems and several corollaries for complex mappings or single mapping on fuzzy metric Spaces.
利用第二、第三章的结果证明了模糊度量空间上相应的复合映射的不动点定理和几个单一映射的不动点定理。
The fixed point theorems for mappings of contractive type and locally contractive type on WF-fuzzy metric Spaces, which extend several important fixed point theorems, are established.
在WF -模糊度量空间中建立压缩型和局部压缩型映射的不动点理论,推广一些重要的不动点定理。
The paper investigates sensitivity analysis of multiobjective optimization in locally compact topological vector spaces instead of metric spaces and obtains much more general results.
利用局部紧的条件,将多目标优划问题的灵敏度分析由度量空间推广到拓扑线性空间,得到了更一般的结果。
In this paper, we obtain some common fixed point theorems under the condition of R-weakly commuting in fuzzy metric Spaces and then extend these results to fuzzy 2 and 3-metric Spaces.
讨论了模糊度量空间中在R -弱可换条件下的公共不动点存在性问题,并将此结果推广到模糊2 -度量空间及模糊3 -度量空间。
The first chapter is about graph-directed self-similar sets in complete metric spaces, and the second chapter is about multifractal analysis of equilibrium measures in dynamical systems.
其中第一章是关于度量空间中的图定向自相似集合,第二章是关于动力系统中平衡态测度的重分形分析。
The fixed point theorems for expansion mappings and the common fixed point theorem for a pair of mappings are given in 2 metric spaces under the condition of weakening mappings continuance.
在2—距离空间中减弱映射的连续性条件下,给出了扩张映射的不动点定理及扩张映射对的公共不动点定理。
In this paper it is proved that uniform convexity metric linear Spaces with completeness are reflexive.
本文证明了完备的一致凸的度量线性空间是自反的。
In this paper it is proved that uniform convexity metric linear Spaces with completeness are reflexive.
本文证明了完备的一致凸的度量线性空间是自反的。
应用推荐