This is supported by the comparison with the results of hierarchical clustering segmentation of point cloud model and K-Means clustering segmentation of mesh model.
与三维网格模型的K均值聚类分割、点云模型的谱系聚类分割的实验结果比较证实了这一点。
An efficient segmentation method based upon fuzzy c-means (FCM) clustering principles is proposed. The approach utilizes a pyramid data structure for the hierarchical ana - lysis of color images.
这里提出了一种高效的基于模糊c均值(FCM)聚类的彩色图像分割方法,它利用塔形数据结构对彩色图像进行多层分割。
It is a procedure of the label following an unsupervised fuzzy clustering that fuzzy c-means (FCM) algorithm is applied to image segmentation.
算法用于图像分割是一种非监督模糊聚类后再标定的过程。
Fuzzy C-means clustering is one of the important learning algorithms in the field of pattern recognition, which has been applied early to image segmentation.
模糊c -均值聚类是模式识别中的重要算法之一,很早就被应用到图像分割中。
An improved color segmentation algorithm is presented based on weighting fuzzy c-means (FCM) clustering algorithm.
在加权模糊c -均值(FCM)聚类算法的基础上,对分色算法进行了改进。
It applies weighted K-means clustering for region segmentation, instead of traditional K-means clustering.
对于区域分割,使用基于加权平方欧式距离的均值聚类算法代替传统的均值聚类算法。
Experimental results show that the new algorithm for image segmentation accuracy than a single K means clustering algorithm and the ant colony clustering algorithm has greatly improved.
实验结果证明,新算法在图像分割处理的精确度上较单一的K均值和蚁群聚类算法有很大提高。
A clustering segmentation algorithm based on an improved K-means clustering method is used to improve the efficiency and accuracy of 3d medical image segmentation.
为提高三维医学数据场的分割效率和准确率,本文利用特征聚类技术,提出了一种新的基于改进K - means聚类的三维医学数据场的体分割算法。
A clustering segmentation algorithm based on an improved K-means clustering method is used to improve the efficiency and accuracy of 3d medical image segmentation.
为提高三维医学数据场的分割效率和准确率,本文利用特征聚类技术,提出了一种新的基于改进K - means聚类的三维医学数据场的体分割算法。
应用推荐