Considering the different effects of wall charges on the adjacent micro-discharges in DBD, we have proposed a mapping equation of discharge moment.
根据壁电荷对相邻两次微放电的不同影响,建立了介质阻挡放电时间序列的映射方程。
Under several suitable transformations, the problem of positive solutions for set-valued condensing mapping equation in an ordered locally convex topological space is studied by some homotopy method.
本文用某种同伦方法,借助于一些适当的变换,讨论了有序的局部凸拓扑线性空间中集值凝聚映象方程的正解问题。
Based on the new method, the paper discusses an inverse mapping of rational parameter surface, also, the implicit equation of the parametric equation is obtained.
用该方法对基于有理参数曲面的逆映射进行了一些探讨,并得到参数曲面的隐式方程。
First a partial differential diffusion equation is applied to solve the inverse map of robots which can keep the topology conserving performance during mapping.
首先运用偏微分扩散方程,只需少量的试验运动即可求解在有限作业空间上拥有同样拓扑关系的机器人逆运动学变换。
Searching for explicit and exact traveling wave solutions of Boussinesq equation by means of deformation mapping method;
计算结果表明 ,分数形变映射法可以十分有效 ,它是非线性复杂方程的求解特殊新方法之一。
By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated.
利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理。
BP network can learn and store a lot of input - output model mapping, without prior mapping reveals the mathematical description of this equation.
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated. Existence and uniqueness results are obtained.
利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理。
This paper proposes the flux mapping method using the higher order harmonics of the neutron equation.
提出用中子方程的高阶谐波进行通量拟合的方法。
This paper is concerned with an analytic invariant curves on a planar mapping of the iterative functional equation.
研究了复合迭代函数方程所代表的一类不变曲线的解析解,通过构造辅助方程的幂级数解,从而获得原方程的解析解。
This paper is concerned with an analytic invariant curves on a planar mapping of the iterative functional equation.
研究了复合迭代函数方程所代表的一类不变曲线的解析解,通过构造辅助方程的幂级数解,从而获得原方程的解析解。
应用推荐