Methods The linear matrix inequalities method is used.
方法线性矩阵不等式方法。
The result is delay dependent and given in terms of linear matrix inequalities.
所得结果与时滞相关的,且相应的结果以线性矩阵不等式的形式给出。
Linear matrix inequalities (LMI) technique provides a new solution for multi-objective controller synthesis.
线性矩阵不等式(LMI)技术为多目标控制器的综合提供了新的解决途径。
Sufficient conditions for the existence of desired controllers are proposed in terms of linear matrix inequalities.
所需的控制器存在的充分条件,提出了线性矩阵不等式。
With the proposed observer, estimating the unknown parameters and solving linear matrix inequalities are not needed.
用此观测器不需要估计未知参数及求解线性矩阵不等式。
Sufficient conditions for the asymptotic convergence of the whole system are provided in terms of linear matrix inequalities (LMI).
本文还验证了整个系统的大范围渐进稳定性的约束条件,并由线性矩阵不等式得出控制率。
A sufficient condition is obtained using finite dimension linear matrix inequalities (LMI) describing by linear (parameter-variety) control.
最后通过线性参变控制,获得了用有限维数线性矩阵不等式描述的充分条件。
This paper presents a condition in terms of linear matrix inequalities (LMIs) for the quadratic stability of discrete-time interval 2-d systems.
本文针对离散区间2 - D系统的二次稳定性问题,给出了线性矩阵不等式形式的判定条件。
The controller to be designed is assumed to have state feedback gain variations. Design methods are presented in terms of linear matrix inequalities (LMIs).
假定所要设计的控制器存在状态反馈增益变化,设计方法是以线性矩阵不等式组的形式给出的。
When the uncertain parameter is satisfied the generalized matching condition, the result is delay dependent and given in terms of linear matrix inequalities.
所得结果与时滞相关,且对于不确定性参数满足广义匹配条件情形,相应结果以线性矩阵不等式的形式给出。
And by using linear matrix inequalities, it gives a design method for the guaranteed cost state feedback controller, including time-delay state in the controller.
利用线性矩阵不等式,给出了有记忆状态反馈保性能控制器的设计方法,所设计的控制器中含有状态时滞。
The conditions of the existence of the robust controllers are given by a set of linear matrix inequalities, which facilitate the solutions of the robust controllers.
鲁棒控制律的存在条件及设计由线性矩阵不等式描述,便于求解。
Under the assumption of time-delay during data transmission, we give the sufficient condition of agents achieving consensus stability using approach of linear matrix inequalities.
在假设数据传输存在时延的情况下,主要利用线性矩阵不等式的方法,给出了群体达到一致性的充分条件。
Traditional observer that using the pole - placement technique exist the problem of unstable regions, a new observer based on linear matrix inequalities is proposed for this problem.
传统采用极点配置方法的自适应观测器存在区域不稳定的问题,针对此缺陷提出了一种基于线性矩阵不等式的新型观测器。
Firstly, based on linear matrix inequalities (LMIs), a sufficient and necessary condition of circular regional controller possessing integrity for descriptor linear systems is given.
首先,用线性矩阵不等式(LMI)给出了线性广义系统圆盘区域的控制器存在的充分条件。
Sufficient conditions for the existence of fuzzy state feedback gain and fuzzy observer gain are derived through the numerical solution of a set of coupled linear matrix inequalities(LMI).
用矩阵不等式给出了模糊反馈增益和模糊观测器增益的存在的充分条件,并将这些条件转化为线性矩阵不等式(LMI)的可解性。
Taking rectangular target-region as an example, a solution for opportunity-awaiting control is provided based on the theory of satisfactory control and linear matrix inequalities (LMI) approach.
以矩形目的域为例,按满意控制的思想,利用线性矩阵不等式(LMI)技术,给出了待机控制策略求解的方法与实例。
The article discusses rank of a matrix by the solution theorem of system of homogeneous linear equations, and proves several famous inequalities and two propositions on rank of a matrix.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
The article discusses rank of a matrix by the solution theorem of system of homogeneous linear equations, and proves several famous inequalities and two propositions on rank of a matrix.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
应用推荐