This paper mainly discusses the least squares problem of complex symmetric matrices on a linear manifold.
本文主要讨论了线性流形上复对称矩阵的最小二乘问题。
The concept of linear manifold has an important meaning for understanding the linear space and system of linear.
线性流行的概念对理解线性空间以及线性方程组的解的结构具有重要意义。
The definition and feature of linear manifold are given. The operation of adding and multiplying is defined for entire linear manifold, hence, linear manifold space is obtained.
给出线性流形的定义及性质,并对线性流形的全体定义了加法与数乘运算,得到了线性流形空间。
Locally linear embedding (LLE) is a widely-used manifold learning algorithm, in this paper we improve on the algorithm and put it to use in spatial data index.
局部线性嵌入方法是一种应用广泛的流形学习方法,本文提出算法的一种改进,并将其应用于空间数据索引。
This paper applies the array manifold interpolation wideband direction finding algorithm on uniform linear array, and gives other two methods of seeking transformation matrix.
文中把阵列流行内插宽带测向算法应用到均匀线阵上,并给出了求变换矩阵的另外两种方法。
Manifold learning attempts to obtain the intrinsic structure of non-linearly distributed data, which can be used in non-linear dimensionality reduction(NLDR).
流形学习旨在获得非线性分布数据的内在结构,可以用于非线性降维。
This paper applies the array manifold interpolation wideband direction finding algorithm on uniform linear array, and gives other two methods of seeking transformation matrix.
引入非均匀时延构造虚拟阵列变换的变换矩阵,提出一种基于二次虚拟阵列变换的到达角估计方法。
This paper applies the array manifold interpolation wideband direction finding algorithm on uniform linear array, and gives other two methods of seeking transformation matrix.
引入非均匀时延构造虚拟阵列变换的变换矩阵,提出一种基于二次虚拟阵列变换的到达角估计方法。
应用推荐