The Local biorder-convexity is a base of the biordering positive decomposition of linear functionals.
拓扑线性空间的局部双序凸性,是该空间上连续线性泛函实现双序正分解的基础。
In this paper the author introduces the definition of the best approximation in topological vector Spaces by use of continuous linear functionals.
本文利用拓扑矢量空间中的连续线性泛函导入最佳逼近定义,给出了最佳逼近元的特征定理、存在性定理和唯一性定理。
This paper investigates the existence of complex support functional of a convex function in complex linear spaces and the complex numerical ranges of the complex support functionals on a point.
采用子空间中支撑泛函延拓的方法,构造出在复线性空间任意点上的复支撑泛函;确定在同一支撑点上复支撑泛函的数值域,从而得到复支撑泛函具有唯一性的充分必要条件。
This paper investigates the existence of complex support functional of a convex function in complex linear spaces and the complex numerical ranges of the complex support functionals on a point.
采用子空间中支撑泛函延拓的方法,构造出在复线性空间任意点上的复支撑泛函;确定在同一支撑点上复支撑泛函的数值域,从而得到复支撑泛函具有唯一性的充分必要条件。
应用推荐