Expect one about a min/max problem, something about Lagrange multipliers, something about the chain rule and something about constrained partial derivatives.
有一个极值问题,也有关于拉格朗日乘数法的,链式法则也会有的,约束条件下偏导数当然不会漏掉。
To solve coordination problem of multi-plants supply chain production planning, a coordination and optimization strategy of internal price based on Lagrange relaxation algorithm was presented.
为了解决多厂供应链生产计划的协调问题,提出了一种基于拉格朗日松弛算法的内部价格协调优化策略。
Lagrange solution is employed to convert the constrained optimization problem and bisection method is used to reach a fast convergence in searching for the optimize Lagrange multiplier.
该算法利用拉格朗日算法将约束条件下的最优化问题进行转化,并采用对分算法加快搜索最优拉格朗日乘子的收敛速度。
Moving boundary problem can easily be solved with equations under the Lagrange Coordinate System for numerical computations of homogenous flow in interior ballistics.
对内弹道均相流数值计算,用拉格朗日坐标下的方程组,容易处理运动边界问题。
The FEM calculate method for contact problem, i. e. LAGRANGE multipliers, penalty methods and direct constrains were discussed.
同时探讨了接触问题的三种计算方法——拉格朗日乘子法、罚函数法和基于求解器的直接约束法;
Under the condition of a discrete logarithm problem, S2 is decrypted by the OPE (Oblivious Polynomial Evaluation) protocol and Lagrange Interpolation Polynomial (scheme 2).
在离散对数困难问题的条件下,利用不经意多项式估值协议和拉格朗日插值多项式来解密s2(方案2)。
At the same time two nonlinear finite element equations for large deformation problem are introduced: the Total Lagrange approach and the Updated Lagrange approach.
同时介绍了大变形问题的两种非线性有限元方法:全拉格朗日法T。
To extend the interpolation problems of Lagrange and Taylor is the ordinary problem about interpolation with derivatives of higher order;
将拉格朗日插值问题、泰勒插值问题揉合为一体进行综合推广,即高次带导数的插值问题的一般情形;
This paper addresses a new augmented Lagrange method(AL) for monotone variational inequality(VI), which needs only to solve one stongly monotone sub-VI problem.
对单调变分不等式的一种新的拉格朗日方法(AL)进行讨论。
Then, we extend the Fillipov's selection theorem and discuss a general Lagrange type optimal control problem. Finally, we present an example that demonstrates the applicability of our results.
然后,利用一个新的可测选择定理解决了受非线性微分包含约束的最优控制的存在性。最后,给一例子加以说明所获结果的应用性。
Then, we extend the Fillipov's selection theorem and discuss a general Lagrange type optimal control problem. Finally, we present an example that demonstrates the applicability of our results.
然后,利用一个新的可测选择定理解决了受非线性微分包含约束的最优控制的存在性。最后,给一例子加以说明所获结果的应用性。
应用推荐