The background samples are chosen by thresholding inter-frame differences, and the Gaussian kernel density estimation is used to estimate the probability density function of background intensity.
通过相隔固定的帧差值阅值化得到背景样本值,并采用高斯核密度估计方法计算背景灰度的概率密度函数。
This method USES kernel density estimation model to construct the approximate density function, and takes hill climbing strategy to extract clustering patterns.
该方法采用核密度估计模型来构造近似密度函数,利用爬山策略来提取聚类模式。
In this paper, a new kernel estimator of multivariate density is proposed by using a univariate kernel function.
本文提出了利用一维核函数构造多维密度函数一个新估计的方法。
This paper introduced the selection principle and method about a reasonable kernel function and bandwidth based on the nonparametric kernel density estimation and kernel regression estimation.
本文基于非参数核密度估计与核回归估计的基础上,介绍了合理选取核函数及窗宽的原则和方法。
Using this method, kernel function could be flexibly chosen to estimate sample point's density values according to different locating application scenes.
推广后的定位方法,可根据具体的目标定位场合,灵活选择核函数对样本点进行核密度估计。
Using this method, kernel function could be flexibly chosen to estimate sample point's density values according to different locating application scenes.
推广后的定位方法,可根据具体的目标定位场合,灵活选择核函数对样本点进行核密度估计。
应用推荐