• Objective to compare the three imputation methods of missing values and provide scientific basis for the best imputation methods of missing values for the schistosomiasis surveillance data in China.

    目的全国血吸虫病疫情监测资料数据来源,比较不同缺失处理方法模拟缺失值处理结果,为确定适用处理资料缺失值的方法提供依据

    youdao

  • Results The multiple imputation method can impute missing values of the crossover design and generate valid statistical inferences.

    结果多重填补方法用于交叉设计缺失数据的填补得出正确的统计推断。

    youdao

  • RESULTS: The multiple imputation method imputed missing values of the crossover design and generated valid statistical inferences.

    结果多重填补方法可用于交叉设计缺失数据的填补得出正确的统计推断。

    youdao

  • Conclusion The multiple-imputation method was the best technique to handle with the missing values in the schistosomiasis surveillance data.

    结论多重填充技术较为适合处理资料缺失比例较少缺失

    youdao

  • A imputation method based on Mahalanobis distance was proposed to estimate missing values in the gene expression data.

    提出基于马氏距离填充算法估计基因表达数据集中的缺失数据

    youdao

  • A imputation method based on Mahalanobis distance was proposed to estimate missing values in the gene expression data.

    提出基于马氏距离填充算法估计基因表达数据集中的缺失数据

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定