The asymptotic behavior of linear impulsive differential equations is studied.
研究了非线性脉冲微分方程零解的最终稳定性。
This paper studies the existence for solutions and qualitative properties of impulsive differential equations.
本文研究脉冲微分方程的解的存在性与定性性质。
In part II, by the same way, we consider first-order impulsive differential equations with integral boundary value problems.
在第二部分中,同样的方法,我们讨论了一阶脉冲微分方程积分边值问题。
Objective to investigate characters of the solution to first order impulsive differential equations with piecewise constant arguments.
目的研究一阶具有分段常数变量的脉冲微分方程的解的性质。
So, it has a practical significance to study the character of solutions of either degenerate differential system with delay or impulsive differential equations with delays.
因此研究退化、脉冲时滞微分方程解的性态具有重要的现实意义。
The existence of periodic solutions for a class of impulsive differential equations with piecewise constant argument is studied by constructing periodic sequence solutions of difference equation.
通过构造差分方程的周期数列解,研究了一类具有分段常数变元的脉冲微分方程周期解的存在性。
Sufficient conditions for boundedness of solutions of nonlinear delay differential equations with impulses are established by using impulsive integral inequalities with a deviation.
利用时滞脉冲积分不等式,给出了一类非线性的脉冲时滞微分方程的解有界性的充分条件。
Aim To investigate the existence of positive solutions for impulsive neutral differential equations.
目的研究脉冲中立型微分方程正解的存在性。
The present paper is devoted to the oscillations and nonoscillations of a kind of impulsive delay differential equations with piecewise constant argument.
文章将建立了具有分段常数滞后变元微分方程组振动的一个充分条件,并讨论其非振动解的渐近性。
In this paper, we study the forced oscillation and the strong oscillation of systems of impulsive neutral parabolic differential equations with several delays.
本文研究了一类脉冲中立型时滞抛物方程解的振动性及强振动性,获得了此类脉冲中立型时滞抛物方程解振动和强振动的代数判据。
In this paper, we consider the oscillatory and asymptotic behavior of two kinds of two order impulsive functional differential equations.
本文主要讨论了两类二阶脉冲时滞微分方程的渐近性态及振动性。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
应用推荐