The enhancement of high-dimensional indexing technique is necessary to improve the performance of image database retrieval.
为了提高图像数据库的检索效率,必须提高高维索引的效率。
This method can avoid some drawbacks such as lots of calculation, inaccurate definition to the features, if one kind of methods is used in the image database retrieval.
采用这种方法解决了单独使用某一方法的缺点,如计算量大、表达复杂、特征表达不够准确等。
Contentbased image retrieval is a hotspot in the research of multimedia database system and digital library.
基于内容的图像检索技术是当前多媒体数据库系统和数字图书馆研究中的一个热点。
Multidimensional indexing technology is the key technology of content-based retrieval in image database.
多维索引技术是基于内容检索的图像数据库的关键技术。
The main contents of this paper include color analysis, image segmentation, image database construction and image retrieval and so on.
本文从颜色分析、图像分割、数据库模型的构建、检索策略等方面对这一课题进行了系统的研究。
The retrieval technique of content-based image database is a focus of query technology studying nowadays, many institutes being engaged in this project have obtained some achievements home and abroad.
基于内容的图像数据库检索技术是当今的一个研究热点,国内外的许多研究机构都在从事这一课题的研究,并取得了一定的研究成果。
The retrieval technique of content-based image database is a focus of query technology studying nowadays.
基于内容的图像数据库检索技术是当今的一个研究热点。
Feature based image retrieval has got more and more attention in multimedia database management and date transmission.
基于特征的图像检索在多媒体数据库管理和多媒体通信传输中得到越来越多的重视。
A content-based medical image retrieval database system was introduced.
介绍了一个基于图像内容检索的医学图像数据库系统。
Based on image Processing and database Management System, Content Based image Retrieval (CBIR) is employed to obtain approximate results from image database, using the visual feature of images.
基于内容的图像检索技术是利用计算机图像处理和数据库管理系统,把图像的可视特征作为数据库检索的依据,对图像数据库进行近似检索。
Content Based image Retrieval is an important and fascinating point of the image database.
基于内容的图像检索是当前图像数据库领域的一个研究热点。
Medical image database is the important and effective means of medical image data retrieval and analysis in clinical diagnosis, education and research.
医学影像数据库及信息系统是医学影像数据有效检索与分析的重要手段,是医学临床、教育与研究的基础。
Some experiments show that in the image database, which has joined the computer graphics and the real photos together, the content-based image retrieval will lose much of its accuracy.
使用区分真实照片与人工图片的算法进行图像的预分类与识别,对于提高基于内容的图像和影片检索的成功率有着较大的现实意义。
So research on how to organize, manage and retrieval the large WEB image database has great value to future Internet service.
因此,研究如何有效地组织、管理和检索大规模的WEB图像数据库,对未来互联网服务具有重要的理论和应用价值。
The retrieval technique of content-based image database is a focus of study nowadays, many institutes being engaged in this project have obtained some achievements home and aboard.
基于内容的图象数据库检索技术是当今的一个研究热点,国内外许多研究机构都在从事这一课题的研究,并取得了一定的研究成果。
Objective to propose a new method for content-based retrieval from medical ct image database on the basis of automatically extracted features of the images.
目的自动获取CT图像特征,提出实现基于内容的CT图像数据库检索新方法。
The same time, it raise a new structure of system of content based image indexing and retrieval which can adapt oneself for adding successful semantic users did to semantic database.
同时提出一种基于内容的图像标引与检索系统结构,能自适应的在图像语义库中添加较为成功的语义表述。
In traditional method of image retrieval searches images according to keys, number and sort describe from image database.
传统的图像索引方法从图像数据库中按照关键字或号码,和按分类描述来检索引图像。
Experiment conducted with image database on nature scenery has proved the combined image retrieval method, put forward by the author, is better off in terms of effectiveness and accuracy.
以自然图像库为例进行实验,结果表明本文提出的图像分类检索方法较单一特征检索有较好的效果,检索效率和精度都有所提高。
Experiment conducted with image database on nature scenery has proved the combined image retrieval method, put forward by the author, is better off in terms of effectiveness and accuracy.
以自然图像库为例进行实验,结果表明本文提出的图像分类检索方法较单一特征检索有较好的效果,检索效率和精度都有所提高。
应用推荐