In section 2, we introduces some useful concepts for the hyperbolic system firstly.
第二章首先介绍了关于双曲守恒律系统的一些基本概念。
This paper present a new finite-difference scheme for solving first-order hyperbolic system.
本文提出一种适于求解一阶双向系统的新的差分格式。
This paper presented a new semi-discrete central scheme for hyperbolic system of conservation laws.
提出了一种新的求解双曲守恒律方程(组)的四阶半离散中心迎风差分方法。
The generalized Riemann problem for a class of decoupled nonlinear hyperbolic system of conservation laws is studied.
研究一类解耦非线性双曲守恒律系统的广义黎曼问题。
There are some results on the comparison of weak solutions of homogeneous hyperbolic system and its approximate model.
对于上述齐次双曲守恒律方程组与其近似模型之间解的比较,已经有人得到了相关结果。
A hyperbolic system of conservation laws with relaxation is considered, and the existence and smoothness of the solution is proved.
考虑一个带有松驰机制的双曲型守恒律组,证明了当初始数据适当小时,整体解的存在及光滑性。
Supposing that the reference trajectory is generated by a stable system, the bounded solution of non hyperbolic internal dynamics is existed by using center manifold theory.
假设期望轨迹由某一稳定外部系统产生,利用中心流形的理论,证明了系统内部动态有界解是存在的。
The shock response of hyperbolic tangent system is investigated under the action of forward sawtooth pulse.
研究双曲正切包装系统在前峰锯齿脉冲作用下的冲击响应。
The shock response of hyperbolic tangent system is investigated under the action of final peak saw tooth shock pulse.
研究双曲正切包装系统在后峰锯齿脉冲作用下的冲击响应。
This model consists the hyperbolic partial differential equations, boundary conditions and cyclical conditions of the system.
该模型由描述系统振动的双曲型偏微分方程组及相应的边界条件和周期性条件组成。
The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations.
基本的方法是以双曲型偏微分方程组的简单波解为根据的。
The presence of homoclinic tangencies and homoclinic intersection makes it difficult if not impossible, to denoise or shadow the trajectory of a non-hyperbolic nonlinear system.
非双曲线型非线性系统同宿切面点和同宿横截点的存在,使得其时间序列的去噪或轨迹重影变得十分困难。
Here we study a nonlinear hyperbolic integrodifferential system which was proposed by h.
本文研究一个非线性双曲微分积分系统,它由H。
The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations.
复杂介质中地震波的传播多是通过求取单程或双程波动方程的数值解进行模拟的。
The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations.
复杂介质中地震波的传播多是通过求取单程或双程波动方程的数值解进行模拟的。
应用推荐