The definition of metric averaging in hyperbolic space is given a few inequalities of metric averaging are obtained.
定义了双曲空间上的度量平均的概念,得到了关于度量平均的几个不等式。
Some geometric data of ellipse in hyperbolic space are considered, such as set inclusion, arc length, geodesic curvature, curvature, area and total curvature.
在双曲空间中,考察椭圆的包含关系,对弧长元素、测地曲率、曲率、面积及全曲率等几何量做出细致考察。
Because the governing equations for compressible unsteady potential flow is hyperbolic, looking time dimension as space dimension in the same way is never appropriate.
但由于可压缩非定常位势流动的控制方程是双曲型的,简单地把时间当作同空间一样的物理维来求解是不可行的。
In this article holomorphic curves in the complex hyperbolic space are discussed.
研究复双曲空间中的全纯曲线。
The concept of ellipse is extended to hyperbolic space and the equation is discussed. Some geometric data of ellipse, such as symmetries, will be considered.
在 双 曲空间中引进相应的椭圆概念、讨论椭圆的方程,并对椭圆的对称性等几何性质做出细致考察。
Due to the hyperbolic properties of convection-dominate dispersion equations, the central difference formula often cause numerical dispersion and oscillation even it has two-order precision in space.
由于对流为主的弥散方程具有双曲性质,中心差分格式虽然关于空间步长具有二阶精度,但会产生数值弥散和非物理力学特性的数值振荡,使数值模拟失真。
Due to the hyperbolic properties of convection-dominate dispersion equations, the central difference formula often cause numerical dispersion and oscillation even it has two-order precision in space.
由于对流为主的弥散方程具有双曲性质,中心差分格式虽然关于空间步长具有二阶精度,但会产生数值弥散和非物理力学特性的数值振荡,使数值模拟失真。
应用推荐