The validity of homogeneous balance method for solving differential equation was shown by solving a new Hamilton amplitude equation.
本文用齐次平衡方法求出了哈密顿振幅方程的精确解。
In this paper, by using the homogeneous balance method and Mathematica, we have obtained new multisoliton solutions of this equations.
本文利用齐次平衡法并借助数学给出它新的多孤子解。
The exact solutions to dispersive long-wave equations are obtained by a polynomial expansion method based on the idea of the homogeneous balance method.
基于齐次平衡法的思想,利用多项式展开法解得了具有色散项的长波方程组的精确解。
Using the extension homogeneous balance method, we have obtain some new special types of soliton solutions of the (2 + 1) - dimensional breaking soliton equation.
使用齐次平衡方法,得到了(2+1)维破裂孤子方程的一些新多孤子解。
In this paper we improve some key steps in the homogeneous balance method, then by using this method we are able to obtain multiple soliton solutions of some nonlinear partial differential equations.
对齐次平衡法的一些关键步骤进行拓宽,获得了一系列非线性方程的多孤子解,使得对非线性方程的多孤子解的求解方法更加直接,且许多步骤可以利用计算机完成。
In this paper we improve some key steps in the homogeneous balance method, then by using this method we are able to obtain multiple soliton solutions of some nonlinear partial differential equations.
对齐次平衡法的一些关键步骤进行拓宽,获得了一系列非线性方程的多孤子解,使得对非线性方程的多孤子解的求解方法更加直接,且许多步骤可以利用计算机完成。
应用推荐