For railway Bridges, the load effect of irregularity lane and wheel weight imbalances is a moving harmonic force.
对于铁路桥梁,机车通过时,车道不平顺及驱动轮重量的不平衡产生的荷载效应是一种移动的简谐力。
By using Fourier transform method, the Green function of a point harmonic force applied at a bi-material plane is obtained.
利用积分变换方法得出了两相材料中作用简谐集中力时的格林函数。
This paper studies chaotic motions in a nonlinear oscillatory system perturbed by external harmonic force and bounded noise excitation.
研究谐和外力与有界噪声激励联合作用下的一类非线性振子的混沌运动。
The principal, ultraharmonic and subharmonic resonance of an elastic rotation shat with twin sides by a harmonic force is discussed, in this paper.
本文研究在简谐激励力作用下二端面弹性转轴相对转动的主共振、超谐波共振和亚谐波共振。
Under the excitation of harmonic force the vibrational power flow characteristics of plate with a surface crack are investigated from the view of structure-borne sound.
从结构噪声的观点研究了在简谐力作用下含有表面裂纹板的振动功率流特性。
Employed wave propagation approach, the vibrational power flow of a submerged infinite cylindrical shell coated with unconstrained viscoelastic layer excited by a radical harmonic force is studied.
采用波传播分析方法,讨论了外部敷设粘弹性自由阻尼材料的无限长圆柱壳在流场中受径向简谐激励的振动功率流。
A novel harmonic micromotor actuated by electrostatic force was proposed, whose basic operating principles were also described.
提出了一种基于静电驱动的新型谐波微电机,描述了该微电机的基本工作原理。
The case of a harmonic oscillator driven by sinusoidally varying force is an extremely important one in many branches .
在许多领域中受正弦变化力策动的谐振子是一种十分重要的运动。
The global magnetic force distribution of single moving electron is firstly obtained by means of spherical cap harmonic analysis.
采用球冠谐和分析方法,首次得到了单个运动电子在全球的受力分布。
In this paper we prove some theorems on harmonic solutions of some second-order nonlinear equations under a periodic external force.
本文给出了某些二阶非线性微分方程在周期外力作用下存在调和解的若干定理。
EA mounted on the either end of rotor shaft can generate impulse excitation force or simple harmonic excitation force with different frequency.
电磁激振器安装在转子的伸出端,产生脉冲激励力或不同频率的简谐激励力。
It is crucial to study the random walk behavior under a sinusoidal force field for the explanation of the response of system under harmonic disturbances.
研究正弦力场下的随机行走问题,是解释系统对于简谐微扰的响应的关键。
It is crucial to study the random walk behavior under a sinusoidal force field for the explanation of the response of system under harmonic disturbances.
研究正弦力场下的随机行走问题,是解释系统对于简谐微扰的响应的关键。
应用推荐