In this paper, a method to build geometric constraint model of 2 dimensional drawing based on undirected graph is presented.
本文提出了一种基于图结构描述的二维图形几何约束模型的建立及存储方法。
Constraint equations were constructed by using distance error model, and the actual geometric parameters of the robot were solved, and then these parameters were used in the modified kinematics model.
利用距离误差模型构造出机器人本体的约束方程,并求解出机器人的实际几何参数,进而将该参数应用于修正系统的运动学模型。
The main problems of Parameter design are abstraction and expression of the geometric constraint relationship, solver of geometric constraint and creation of geometry model.
参数化设计的关键是几何约束关系的提取和表达,几何约束的求解及参数化几何模型构造。
The reduction is carried out by using geometric constraint graph based on the point clusters. Then the sequence of reduction is computed and the geometric model is rebuilded.
该算法基于点簇对约束网络图进行归约,求得归约序列然后重构几何模型,具有求解速度快、可靠性高、应用范围广等优点。
A new strategy of constructing and managing the parametric model is used in used in this method. It extends usual graphics data structure to describe geometric constraint.
该方法引入了建立和管理参数化模型的策略,通过扩展一般的图形数据结构统一表示几何约束。
When transferring a geometric constraint equation group into an optimization model, we need a method to jump out of the local beat solution so that we can find a best global solution.
在将几何约束问题的约束方程组转化为优化模型的时候,需要找到一种方法来跳出局部最优解,进而找到全局最优解。
The paper provides a method to drive geometric object based on the constraint and engineering relations in designing a geometry model.
本文系统地阐述了一种在进行几何型体设计时用约束关系和工程关系来驱动几何型体的方法。
A numerical model for calculating geometric parameters of the insert pocket on a boring cutting tool with indexable inserts is presented using the constraint optimization approach offered by ANSYS.
将坐标变换用于可转位面铣刀的刀片槽设计,建立了铣刀切削角度、刀片角度以及刀片槽形成角度的数学关系,给出了刀片槽角度设计和制造的有效计算方法。
A numerical model for calculating geometric parameters of the insert pocket on a boring cutting tool with indexable inserts is presented using the constraint optimization approach offered by ANSYS.
将坐标变换用于可转位面铣刀的刀片槽设计,建立了铣刀切削角度、刀片角度以及刀片槽形成角度的数学关系,给出了刀片槽角度设计和制造的有效计算方法。
应用推荐