The two value weak model for first order logic with generalized quantifier Q is generalized to be valued in complete weak complemented lattices.
将带广义量词Q的一阶逻辑的二值弱模型推广到取值于完备弱可补格上。
The completeness and higher-order squeezing properties of generalized odd and even coherent states of a Q-deformed non-harmonic oscillator are investigated.
给出了Q变形的非简谐振子广义奇偶相干态的完备性证明,并且研究了它们的高阶压缩特性。
In chapter two, a new q-ary generalized self-shrinking sequence is introduced. The sequences generated have good pseudo-randomness.
在第二章提出了一类新的广义自缩序列,研究表明该类序列具有较好的伪随机性质;
The generalized expression for the phase-space product Q of a beam generated from a partially coherent source is presented by using coherent-mode representation of partially coherent beams.
根据部分相干光的相干模表示法,推导了由部分相干光源所产生光束的相位一空间积Q。
The generalized expression for the phase-space product Q of a beam generated from a partially coherent source is presented by using coherent-mode representation of partially coherent beams.
根据部分相干光的相干模表示法,推导了由部分相干光源所产生光束的相位一空间积Q。
应用推荐