A new concept of generalized fuzzy inference and the generalized fuzzy RBF network model are presented. The generalized Lear ni ng algorithm of this network model is derived.
在提出广义模糊推理概念的基础上,提出并分析了广义模糊径向基(rbf)神经网络模型,给出了该网络的广义学习算法。
Aimed at the problems of document automatic classification, a classification method is proposed based on fuzzy vector space model and RBF network.
针对文本自动分类问题,提出了一种基于模糊向量空间模型和径向基函数网络的分类方法。
A design scheme of optimal RBF fuzzy neural network controller is proposed based on artificial immune principle.
提出了一种基于人工免疫原理的最优r BF模糊神经网络控制器设计方案。
For reinforcement learning control in continuous Spaces, a Q-learning method based on a self-organizing fuzzy RBF (radial basis function) network is proposed.
针对连续空间下的强化学习控制问题,提出了一种基于自组织模糊rbf网络的Q学习方法。
We study expert PID control, fuzzy adaptive PID control, RBF neural network PID control, internal control based on RBF neural networks.
研究了专家PID控制、模糊自适应PID控制、基于RBF神经网络整定的PID控制、基于RBF神经网络的内模控制。
In the control system, Bayes probability is introduced in the fuzzy RBF neural network and it intensity the inference ability and increase the servo precision.
在控制系统中,将贝叶斯概率引入到模糊rbf神经网络中,增强了系统的推理能力,提高了飞机各个航道位置的模拟伺服精度。
The model forecasts the daily load by the nonlinear approaching capacity of the RBF neural network, than corrects the errors by on-line self-tuning factors of fuzzy control.
该模型利用RBF神经网络的非线性逼近能力对预测日负荷进行了预测,并采用在线自调整因子的模糊控制对预测误差进行在线智能修正。
The model forecasts the daily load by the nonlinear approaching capacity of the RBF neural network, than corrects the errors by on-line self-tuning factors of fuzzy control.
该模型利用RBF神经网络的非线性逼近能力对预测日负荷进行了预测,并采用在线自调整因子的模糊控制对预测误差进行在线智能修正。
应用推荐