The fuzzy c-means algorithm (FCM) is one of widely used clustering algorithms.
模糊c均值算法(FCM)是经常使用的聚类算法之一。
A clustering algorithm for Chinese documents based on the spherical fuzzy c-means algorithm is presented.
提出一种基于球形的模糊c -均值算法的中文文本聚类方法。
Without considering the spatial information of images, the original fuzzy C-means algorithm is very sensitive to image noise.
由于原始的模糊c -均值聚类算法没有考虑图像的空间信息,算法对图像中的噪音点十分敏感。
This paper discusses the fuzzy C-means algorithm (FCM), one of the fuzzy clustering methods and clustering validity measurements.
本文讨论了模糊聚类中的模糊C均值算法和聚类有效性测度。
Based on fuzzy C-Means algorithm (FCM) and fuzzy Min-Max Neural Networks, an integrated algorithm for fuzzy pattern recognition using hypercube set was proposed.
结合模糊c均值算法(FCM)与模糊最小最大神经网络算法,提出一种基于超长方体集的模糊模式识别算法。
A dot density weighted fuzzy C-means algorithm is proposed by using density size of data dot regarded as weighted value and distributing characteristic of datas own.
利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种点密度加权模糊c -均值算法。
In this article we combine the fuzzy C-means algorithm with fuzzy measures and fuzzy integrals and apply the two algorithms to the medicinal pathological image segmentation.
本文将经典的模糊c -均值聚类算法和模糊测度和模糊积分结合起来,并将这两种算法应用于医学病理图象的分割。
An improved color segmentation algorithm is presented based on weighting fuzzy c-means (FCM) clustering algorithm.
在加权模糊c -均值(FCM)聚类算法的基础上,对分色算法进行了改进。
In the paper, a suppressed fuzzy c-means (S-FCM) algorithm, for intensity image segmentation, is proposed on the basis of the characters of FCM algorithm and intensity images.
该文根据FCM算法和灰度图像的特点,提出了一种适用于灰度图像分割的抑制式模糊C -均值聚类算法(S - FCM)。
This paper proposes a modified fuzzy C-means (MFCM) clustering algorithm to cluster all images before retrieval.
论文采用了一种基于改进的模糊C均值算法来聚类图像。
The traditional fuzzy C-means (FCM) algorithm is an optimization algorithm based on gradient descending. it is sensitive to the initial condition and liable to be trapped in a local minimum.
传统的模糊c -均值(FCM)聚类是一种基于梯度下降的优化算法,该方法对初始化较敏感,且易陷入局部极小。
It is a procedure of the label following an unsupervised fuzzy clustering that fuzzy c-means (FCM) algorithm is applied to image segmentation.
算法用于图像分割是一种非监督模糊聚类后再标定的过程。
The improved fuzzy C-means clustering algorithm has better robustness and makes the cluster results insensitive to the predefined cluster number.
改进后的模糊C-均值聚类算法具有更好的鲁棒性,且放松了隶属度条件,使得最终聚类结果对预先确定的聚类数目不敏感。
According to the characteristics of traffic flow, it USES fuzzy C-means clustering algorithm to deal with these fuzzy factors.
根据交通流特性,运用模糊C均值聚类算法对交通流各要素进行模糊分析处理。
Based on the traditional fuzzy C-means clustering algorithm, a new fuzzy C-means clustering algorithm for interval data clustering is proposed.
在传统模糊c -均值聚类算法的基础上,提出了一种新型区间值数据模糊聚类算法。
The results revealed that fuzzy c-means clustering algorithm could be used to delineate management zones by using the given variables.
利用所选取的变量,模糊c均值聚类算法可以较好地进行管理分区划分。
The results revealed that fuzzy c-means clustering algorithm could be used to delineate management zones by using the given variables.
利用所选取的变量,模糊c均值聚类算法可以较好地进行管理分区划分。
应用推荐