According to the Fresnel-Kirchhoff diffraction integral and nonlinear paraxial wave equation, we derive the functional relationship of the intensity of hot image and its location.
利用菲涅耳基尔霍夫衍射积分和非线性近轴波动方程,在远场近似及光学薄近似条件下,得出了位相调制产生“热像”出现的位置及强度满足的解析关系。
Under the excitation of an impulse, the radiation field has to be evaluated in terms of precise Fresnel-Kirchhoff formula; otherwise, some important transient features would be lost.
指出在瞬态信号激励下,必须用严格的夫累涅尔-基尔霍夫公式来计算辐射场,否则将丢失许多重要的瞬态特性。
The diffraction of Gaussian beams at an square aperture is studied based on the Kirchhoff and Fresnel diffraction integrals.
使用基尔霍夫衍射积分公式和菲涅耳衍射积分公式对高斯光束通过方孔光阑的衍射进行了研究。
Basing on the light diffracting theory of Kirchhoff, we obtain the expression for the intensity of speckles in deep Fresnel diffraction region.
本文利用基尔霍夫近似理论,对菲涅耳极深区相干散斑和部分相干散斑进行了理论研究和计算模拟。
Basing on the light diffracting theory of Kirchhoff, we obtain the expression for the intensity of speckles in deep Fresnel diffraction region.
本文利用基尔霍夫近似理论,对菲涅耳极深区相干散斑和部分相干散斑进行了理论研究和计算模拟。
应用推荐