In the second chapter, we present an additive Schwarz preconditioner for the rotated Q_1 finite element discretization of second order elliptic problem.
我们在第二章中构造了求解用旋转Q_1有限元离散椭圆型偏微分方程的区域分解方法。
In comparison with the current discretization finite element method, the present method has the merits of easy data input, quick operation and storage saving in computer analysis.
本文方法与现有的离散化有限元法相比,具有输入数据简单,运算速度快,大量节省计算机内存的优点。
This paper analyses some important factors which cause discretization error in linear eddy-current problems by the finite element method.
本文以一个典型二维涡流场问题作为计算实例,分析了■有限元法求解线性涡流场时产生离散误差的主要因素。
The eight-point finite element is used for the discretization in the space system. The finite element model is given, facilitating to sensitivity analysis for non-linear direct and inverse problems.
采用八节点的等参单元在空间上进行离散,建立了便于敏度分析的非线性正演和反演的有限元模型,可直接求导进行敏度分析。
The finite element method is obtains the approximate solution according to the variational principle and the discretization the method.
有限元法是根据变分原理和离散化而取得近似解的方法。
The finite element method is obtains the approximate solution according to the variational principle and the discretization the method.
有限元法是根据变分原理和离散化而取得近似解的方法。
应用推荐