An integral expansion theorem is derived in this paper.
本文推证了一个积分展开定理。
In this paper, we showed the nome-type compression and expansion theorem of condensing maps.
本文给出了凝聚映射的范数型锥拉伸和压缩定理。
The classical displacement expansion theorem and the modal aggregation principle are discussed at the beginning of the paper.
首先回顾经典的位移展开定理和模态叠加原理。
Besides, by giving a Dirac eigenvalue problem example and studying the eigenvalue and eigenfunction of it and its adjoint problem, we can obtain an eigenfunction expansion theorem.
此外讨论了一个非自伴的问题,对它和它的伴随问题的特征值、特征函数进行了详细的讨论,得到了一特征展开定理。
The fixed point theorems for expansion mappings and the common fixed point theorem for a pair of mappings are given in 2 metric spaces under the condition of weakening mappings continuance.
在2—距离空间中减弱映射的连续性条件下,给出了扩张映射的不动点定理及扩张映射对的公共不动点定理。
The existence of co-exist periodic solution is investigated by using the bifurcation theory, the implicit function theorem and the method of asymptotic expansion.
运用分歧理论,隐函数定理,以及渐近展开的方法,获得了非平凡周期解的存在性。
By using the fixed-point theorem of cone expansion-compression type with norm, we study the existence of positive pseudo-symmetric solutions to a four-point boundary value problem.
利用范数形式的锥拉伸与压缩不动点定理,研究了一类四点边值问题拟对称正解的存在性。
By using the fixed-point theorem of cone expansion-compression type with norm, we study the existence of positive pseudo-symmetric solutions to a four-point boundary value problem.
利用范数形式的锥拉伸与压缩不动点定理,研究了一类四点边值问题拟对称正解的存在性。
应用推荐