By using the fixed point theory and a new three-solution theorems, the existence of multiple solutions of the boundary value problem was obtained.
通过利用不动点指数理论及一个新的三解定理,得到了边值问题多个正解的存在性。
The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性。
By using critical point theory, we obtain some conditions for the existence of multiple solutions on boundary value problems of a discrete generalized Emden-Fowler equation.
应用临界点理论,获得了一类离散广义Emden - Fowler方程边值问题存在多个解的条件。
First, some conditions for the existence of a multiple periodic solutions are given and the multiplicity problem for zero solution of some concrete equations is investigated as applications.
提出未扰动系统出现多重周期解的条件,并给出了一些特殊方程零解的具体重数作为应用;
By using critical point theory, we obtain some sufficient conditions for the existence of multiple periodic solutions to a discrete Hamiltonian system.
本文利用临界点理论,建立了一类离散哈密顿系统存在多个周期解的一些充分条件。
In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
本文利用不动点指数理论得到离散边值问题多重正解的存在性。
In this paper, we study the existence of multiple nontrivial solutions for the variable coefficient elliptic equations with critical Sobolev exponents.
本文讨论一类变系数带临界指数的椭圆型方程,主要考虑上述问题的非平凡解的存在性,包括多解与非存在性。
This paper discusses the existence of multiple positive solutions of a class of nonlinear singular boundary value problems by means of the fixed point index Theorem on cones.
利用锥映射的不动点指数定理,研究了一类非线性奇异边值问题多个正解的存在性问题。
This paper discusses the existence of multiple positive solutions of a class of nonlinear singular boundary value problems by means of the fixed point index Theorem on cones.
利用锥映射的不动点指数定理,研究了一类非线性奇异边值问题多个正解的存在性问题。
应用推荐