Lindenstrauss, the ICM citation says, "has made far-reaching advances in ergodic theory," which studies the statistical behavior of dynamical systems.
国际数学联盟在颁奖辞中称Lindenstrauss在遍历理论方面取得了意义深远的进展,遍历理论是用于研究动力系统统计行为的数学分支。
Roughly speaking, dynamical systems consist of differential dynamical system, topological dynamical system, infinite dimensional dynamical system, complex dynamical system and ergodic theory etc.
今天的动力系统大致可分为微分动力系统、拓扑动力系统、无穷维动力系统、复动力系统、遍历论等方向。
Roughly speaking, dynamical systems consist of differential dynamical system, topological dynamical system, infinite dimensional dynamical system, complex dynamical system and ergodic theory etc.
今天的动力系统大致可分为微分动力系统、拓扑动力系统、无穷维动力系统、复动力系统、遍历论等方向。
应用推荐