In the theory of elastic thin plates, to solve the problem of rectangular overhanging plates with complicated boundary conditions is very hard for long.
对于具有复杂边界条件的矩形外伸板,在弹性薄板理论中是一个较难解决的问题。
In the theory of elastic thin plates, the bending of rectangular cantilever plates has long remained one of the most difficult problems.
在弹性薄板理论中,悬臂矩形板的弯曲,长期以来是最困难的问题之一。
In the theory of elastic thin plates, the bending of a free rectangular plate on the elastic foundation is also a difficult problem.
在弹性地基上的自由矩形板的弯曲,在弹性薄板理论中也是个难题。
In this paper a general form of analytical solutions to the bending problems for orthotropic rectangular thin plates on elastic foundations is proposed, going on the promise of Winkler's assumption.
本文提出了在文克勒假设前提下,弹性地基上正交各向异性矩形薄板弯曲问题解析解的一般格式。
The reciprocal method is applied to establish the generalized displacement solution for the elastic stability of thin rectangular plates, and the boundary values of it are also worked out.
本文引入了稳定问题的广义支承边和广义支承边矩形板的概念,应用功的互等法建立了弹性矩形薄板稳定问题的广义位移解,并给出了广义位移解的各个边界值。
A general solution of differential equation for free vibration displacement function of compressed rectangular thin plates on two parameters elastic foundation is established.
建立了双参数弹性地基上受压的矩形薄板自由振动位移函数微分方程的一般解,其中积分常数由边界来确定。
A general solution of differential equation for free vibration displacement function of compressed rectangular thin plates on two parameters elastic foundation is established.
建立了双参数弹性地基上受压的矩形薄板自由振动位移函数微分方程的一般解,其中积分常数由边界来确定。
应用推荐