This paper gets discretization equation by integrating the basic equation of unsteady heat conduction and writes a calculating program.
此文根据非稳定热传导基本方程式积分得到离散化方程式,编写出计算程序。
The discretization equation obtained takes the same form as that for the pure conduction problem, with the radiation heat flux at the interface appearing as an additional source term.
推导结果表明,此时离散方程的形式仍与纯导热物体的形式相同,只是界面上的辐射热流以源项的形式进入到离散方程中。
Given the stability, error estimate of full discretization for the linear equation.
给出该线性方程全离散的稳定性和误差估计。
It mainly carries on the continuous process stochastic differential equation discretization of the research.
技术上的思想主要是将连续过程的随机微分方程离散化来进行研究。
Numerical scattering is one of the most common discretization errors in the numerical method for radiative transfer equation.
数值散射是辐射传递方程近似算法中最常见的离散误差。
By analyzing the differential equation for GM(1,1), this paper deduces one accurate discretization model to solve GM(1,1) model.
通过分析GM(1 ,1 )模型白化形式微分方程的解析表达式,导出了求解GM( 1 ,1 )的精确离散化模型。
Discretization in angular coordinate is needed only and the global equation is a second order characteristic matrix equation.
该一维有限元列式只需对扇形区域在角度方向上离散,最后的总体方程为一个二次特征根方程。
The discretization and relevant numerical technique for the equation are briefly described.
简述了方程的离散化及有关的数值技术。
By the discretization of spatial variable in the equation, a third-order differential system of equations containing periodic time-varying coefficient is derived.
采用微分求积法对方程中的空间变量进行离散,得到仅含有时间变量的三阶周期系数微分方程组。
Numerical Methods for PEDs, Integral Equation Methods, Lecture 6: Discretization and Quadrature (PDF).
偏微分方程数值方法,积分方程法,课程6:离散与求积法(PDF)。
Numerical Methods for PEDs, Integral Equation Methods, Lecture 3: Discretization Convergence Theory (PDF).
偏微分方程数值方法,积分方程法,课程3:离散收敛理论(PDF)。
The variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data.
生产应用中,采用短时、长时自学习方法对换热系数进行在线修正,进一步提高模型的预测精度和稳定性。
We propose an implicit discretization for the level set equation of the model and solve it using additive operator splitting scheme (AOS).
本文提出,首先,将该模型对应的水平集方程做隐式数值化,然后采用加性算子分割方法(AOS)求解。
We propose an implicit discretization for the level set equation of the model and solve it using additive operator splitting scheme (AOS).
本文提出,首先,将该模型对应的水平集方程做隐式数值化,然后采用加性算子分割方法(AOS)求解。
应用推荐