We put block matrix method in the calculation of Higher-order determinant in this article and give some calculating formulas, methods of calculation, condition of calculation and skills.
作者将矩阵分块法应用到高阶行列式的计算中,并给出了几个计算公式、算条件及方法和技巧。
To solve the problem about determinant and solution to tangent line of curve of second order in Analytic Geometry with viewpoint and methods of Higher Geometry.
利用《高等几何》的观点、方法解决《解析几何》中的二次曲线的切线的存在性与求法问题。
On the calculation of determinant and the proof, it post the superiority of them on the calculation of the symmetric determinant and the even number order anti-symmetric determinant.
探求了行列式第一降阶定理在一般行列式的计算上与证明上的可行性,揭示了它们在对称行 列式与偶数阶反对称行列式计算上的优越性。
The thesis analyzes the relationship between Wronsky determinant and linear equation relativity of function in order to get the common solution determinant of linear differential coefficient equation.
探讨了某些特殊类型二阶变系数齐次线性常微分方程的解与系数的广义关系,尝试了从理论上给出通解的一般形式和特解的系数决定式。
The thesis analyzes the relationship between Wronsky determinant and linear equation relativity of function in order to get the common solution determinant of linear differential coefficient equation.
探讨了某些特殊类型二阶变系数齐次线性常微分方程的解与系数的广义关系,尝试了从理论上给出通解的一般形式和特解的系数决定式。
应用推荐