All Public key cryptosystems I know of USES a 1-1 key relationship.
我知道所有的公钥密码体制的使用1 - 1关键的关系。
In these cryptosystems, Euler totient functions play an important role.
在这些密码体制中,欧拉函数起着重要作用。
Elliptic curve cryptosystem is a hot topic in public key cryptosystems.
椭圆曲线密码体制是公钥密码体制研究的热点。
Boolean permutations are in very important applications in cryptosystems.
布尔置换在密码体制中有着非常重要的应用。
Key schedule is an important part in designing iterated block cryptosystems.
密钥编排是迭代型分组密码体制设计的一个重要环节。
The obtained cryptosystem modifies the class of MC public key cryptosystems.
这种体制是一类MC公钥密码体制的改进。
Public key Cryptosystems is key technology of realizing information security.
公钥密码体制是实现信息安全保密的关键技术。
Boolean permutations have important applications in the design of cryptosystems.
布尔置换在密码体制的设计中有着重要的应用。
Two threshold cryptosystems secure against chosen ciphertext attacks are proposed.
提出两个抗选择密文攻击的门限密码系统。
The RSA public-key cryptosystem is one of the widely used public-key cryptosystems.
RSA公钥密码体制是一种被广泛使用的公钥密码体制。
Elliptic curve cryptosystems are one kind of the most promising public key cryptosystems.
椭圆曲线密码是目前最具潜力的一类公钥密码系统。
Accordingly, the protocol security is rested on the used underlying public cryptosystems.
协议的安全性基于其使用的公钥加密方案。
Analysis of MD algorithm and its application to RSA public-key cryptosystems are given in detail.
本文详细地分析了乘除算法,并讨论了该算法在RSA公钥保密系统中的应用。
In this dissertation the elliptic curve cryptosystems and the related algorithms are investigated.
本文主要研究椭圆曲线密码和其中的有关算法。
In this paper, we use a new method to show that generalized GM cryptosystems are polynomial secure.
本文用较独特的方法证明了广义GM体制是多项式安全的。
The RSA algorithm based on the numeric theory is the best encryption algorithm in public key cryptosystems.
RSA算法是基于数论的公钥密码体制,是公钥密码体制中最优秀的加密算法。
Modular exponentiation is the most common fundamental and time consuming operation in RSA public-key cryptosystems.
模幂运算是RSA公钥密码算法中最基本也是最耗时的运算。
A directed digital signature based on hyper elliptic curve cryptosystems was proposed and the security was discussed.
该文基于超椭圆曲线密码体制提出了一个单向签名方案,并分析了其安全性。
This paper proposes the concept of evolutionary cryptosystems and an evolutionary method for designing cryptosystems.
本文提出演化密码的概念和用演化计算设计密码的方法。
The fast implementation of elliptic curve cryptosystems relies on the efficient computation of scalar multiplication.
椭圆曲线密码体制的实现速度依赖于曲线上标量乘法的运算速度。
Modular inversion is a part of the kernel for computations in the Galois field GF (p) used by many public key cryptosystems.
有限域上的模逆运算是许多公钥密码系统使用的算法中的核心域运算之一。
They are basic modules to construct threshold cryptosystems, and also important components of secure multiparty computation.
分布式乘法计算是构造门限密码体制的基本模块,同时也是安全多方计算领域的重要研究内容。
And from which the fast and efficient public-key cryptosystems are constructed, and their security and efficiency are analysed.
在此基础上我们构造出快速高效的公钥密码算法,并对该算法进行了安全性和效率分析。
All Public key cryptosystems I know of USES a 1-1 key relationship. So it's not possible with the standard algorithms available.
我知道所有的公钥密码体制的使用1 - 1关键的关系。所以它不可能与标准算法。
It is shown that the combination of chaotic encryption and conventional encryption is important for raising the security of cryptosystems.
分析表明,这是提高加密系统安全性的一个新的重要研究课题。
The center to the implementation of elliptic curve cryptosystems efficiently lies in the arithmetic of scalar multiplication and addition.
椭圆曲线密码体制高速实现的关键是点的数乘与加法。
By investigating the elliptic curve cryptosystems, the problems are reduced the fast computations of scalar multiplication of the elliptic curve.
通过对椭圆曲线密码体制的研究,将快速实现椭圆曲线密码的问题归结为标量乘法的实现效率。
The digital signature is different from traditional signature, it is based on public key cryptosystems and is constructed by cryptogram arithmetic.
数字签名不同于传统的手写签名方式,它是基于公钥密码体制,依据一定的密码算法构造而成的。
The digital signature is different from traditional signature, it is based on public key cryptosystems and is constructed by cryptogram arithmetic.
数字签名不同于传统的手写签名方式,它是基于公钥密码体制,依据一定的密码算法构造而成的。
应用推荐