This is why the convex hull algorithm front of some preparation work!
这个正是凸包算法前面的一些准备工作!
This paper improves the fast convex hull algorithm of planar point set based on sorted simple polygon.
提出了一种基于有序简单多边形的平面点集凸包快速求取的改进算法,新的算法能够避免极值点重合的问题。
The author proposed a new rotating coordinates convex hull algorithm, and using it in assessing roundness to reduce the computation.
提出了一种新的基于坐标旋转的凸包算法,并将其运用在对圆度误差的最小外接圆评定算法中,减小计算量。
To solve the problems, the minimum internal convex hull algorithm is proposed in this paper. The method holds both low-computational costs and faster calculation speed .
最后,介绍了目前流行的两种投票法,并针对现有投票法的问题和缺点,提出一种最小内凸包的算法。
The paper presents an efficient approximate algorithm for Convex Hull of very large planar point set. That is Point Set Coordinate Rotation Algorithm(PSCR).
提出了一种计算海量平面点集凸壳的快速近似算法——点集坐标旋转法(PSCR)。
Numerical experiments show that the improved Convex Hull-based training data selection algorithm reduces the training time, maintains a good generalization ability and has some reference value.
数值实验表明,改进的基于凸壳的训练数据选取算法缩短了训练时间并保持了良好的泛化能力,具有一定的参考价值。
The second algorithm is that polygonal concave points and newly created concave points are continuously removed, and a vertex sequence of the convex hull is finally obtained.
第二个算法不断删去多边形的凹点及新产生的凹点,最后得到凸壳顶点序列。
Constructing convex hull of planar point set is a basic algorithm in computational geometry.
求平面点集的凸包是计算几何的一个基本算法。
Constructing convex hull of planar point set is a basic algorithm in computational geometry.
求平面点集的凸包是计算几何的一个基本算法。
应用推荐