Line integrals are used extensively in the theory of functions of a complex variable.
在复变量函数理论中广泛使用线积分。
The nonsingular integrals are popularly calculated by the Gauss numerical integral, and they are low in precision when the source points approach the element, and the singular integrals are complex.
非奇异积分一般采用数值积分,当配置点接近积分单元时,计算精度较低,奇异积分的计算也很复杂。
This paper discusses the estimation of approximation orders of singular integrals over a general curve by means of cubic complex spline.
讨论曲线上柯西型奇异积分利用三次复样条进行近似计算的误差估计,对于相关函数类给出了这类逼近的误差阶。
This paper introduces the concept of potential function into the multiply-connected region and provides its method of computation in order to solve some complex problems concerning line integrals.
本文在复连域上引进势函数的概念,并给出其计算方法,以此来解决一些复杂的曲线积分计算问题。
To avoid calculating the time-consuming Sommerfeld's integrals, the discrete complex image method (DCIM) is employed to obtain spatial domain closed-form Greens function for planar-layered media.
使用离散复镜像方法(DCIM)快速得到平面分层介质的空间域的闭式格林函数,避免了费时的索末菲尔德积分。
Methods in evaluating integrals, some complex variable methods, infinite series, special function, ordinary differential equations, vector and materials, groups and group representations.
计算积分的方法、复数方法、无线级数、奇殊函数、微分方程、向量及矩阵、群论。
Methods in evaluating integrals, some complex variable methods, infinite series, special function, ordinary differential equations, vector and materials, groups and group representations.
计算积分的方法、复数方法、无线级数、奇殊函数、微分方程、向量及矩阵、群论。
应用推荐