• In order to improve the training efficiency, an advanced Fuzzy Support Vector Machine (FSVM) algorithm based on the density clustering (DBSCAN) is proposed.

    为了提高模糊支持向量在数据集上训练效率,提出种改进的基于密度聚类(DBSCAN)的模糊支持向量机算法

    youdao

  • To solve the problem that support vector machine(SVM) can only classify the small samples set, a new algorithm which applied SVM to density clustering is proposed.

    为了解决支持向量分类应用于较小样本问题提出一种密度聚类支持向量机相结合的分类算法

    youdao

  • This approach exploits unlabeled data for efficient clustering, which is applied in the classification with support vector machine (SVM) in the case of small-size training samples.

    方法利用大量标识数据进行有效类,将聚类结果用于样本情形下支持向量分类

    youdao

  • According to the border region of rough set theory and the merits of V-support vector machine, the algorithm of support vector clustering is improved.

    根据粗糙理论边界区域V -支持向量优点支持向量聚类算法进行改进。

    youdao

  • This paper's main works is that: learning algorithm studies of support vector machine, mathematical model and application about feature selection, convergence analysis of clustering algorithm.

    本文主要致力于支持向量、近似支持向量机学习算法研究特征提取数学模型算法的改进及其应用,聚类分析算法的收敛性证明

    youdao

  • This paper's main works is that: learning algorithm studies of support vector machine, mathematical model and application about feature selection, convergence analysis of clustering algorithm.

    本文主要致力于支持向量、近似支持向量机学习算法研究特征提取数学模型算法的改进及其应用,聚类分析算法的收敛性证明

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定