Learning rules are constructed according to deterministic annealing to optimize classifier parameters, on purpose to reduce classification error and system entropy of the space to be identified.
由确定性退火技术构造学习规则用于优化分类器参数,目的是减少分类误差以及待识别空间的系统熵。
By using rough set theory, this paper structures classification rules and processes the support vector machine feedback results with learning the train set.
利用粗糙集理论,通过对训练集的学习,构造分类规则,对支持向量机反馈后的结果再次进行处理。
By using rough set theory, this paper structures classification rules and processes the support vector machine feedback results with learning the train set.
利用粗糙集理论,通过对训练集的学习,构造分类规则,对支持向量机反馈后的结果再次进行处理。
应用推荐