Discovering association rules is an important data mining problem. While discovering Quantitative association rules differs from traditional Boolean association rules.
关联规则的发现是数据挖掘的一个重要方面,而数量关联规则的发现不同于传统的布尔型关联规则。
Most quantitative association rules transform mining association rules of numeric property into boolean property, and the kernel problem is to divide the numeric data into intervals.
数值型关联规则的算法大多是将多值属性关联规则挖掘问题转化为布尔型关联规则挖掘问题,而连续属性的离散化是数值型关联规则的核心问题。
Most quantitative association rules transform mining association rules of numeric property into boolean property, and the kernel problem is to divide the numeric data into intervals.
数值型关联规则的算法大多是将多值属性关联规则挖掘问题转化为布尔型关联规则挖掘问题,而连续属性的离散化是数值型关联规则的核心问题。
应用推荐