The Word Sense Disambiguation (WSD) study based on large scale real world corpus is performed using an unsupervised learning algorithm based on DGA improved Bayesian Model.
采用基于依存分析改进贝叶斯网络的无指导的机器学习方法对汉语大规模真实文本进行词义消歧实验。
The learning of Bayesian Networks is an important tache, which combines training data with prior knowledge and model evaluation to acquire the structure hidden in data and parameters.
贝叶斯网络的学习是数据挖掘中非常重要的一个环节,是将先验知识和模型评价融入训练数据,获得数据中隐藏的拓扑结构和参数的过程。
The learning of Bayesian Networks is an important tache, which combines training data with prior knowledge and model evaluation to acquire the structure hidden in data and parameters.
贝叶斯网络的学习是数据挖掘中非常重要的一个环节,是将先验知识和模型评价融入训练数据,获得数据中隐藏的拓扑结构和参数的过程。
应用推荐