This paper discusses some extension of uniform convex Banach space and their relations.
本文主要讨论介于一致凸和严格凸之问的一些推广及其关系。
Integro-differential equations with nondensely defined linear operators in Banach space was considered.
我们研究含非稠定闭线性算子的积-微分方程。
The method of quasi-upper and lower solution for second order Neumann boundary value problems in Banach space;
本文利用上、下解方法证明了两类三阶边值问题解的存在性和唯一性。
In this paper, the existence of solution to the variational inclusions concerning intermediate derivatives is discussed in the Banach space.
利用这些概念和标量导数研究了变分不等式问题解的存在性。
In this paper, a method is presented for solving non differentiable equations in Banach space. At the same time, we analysis its convergence and get error estimates.
本文提出了一种解非线性不可微方程的迭代方法,分析了其收敛性并给出了误差估计,取得了很好的效果。
A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
应用推荐