Tags let you dump the attribute data of the model.
您可以使用标记对模型中的属性数据进行转储。
The data model has no notions of words or tokens inside a text node; it just represents the textual content of an element or attribute as one contiguous node.
数据模型没有表示文本节点中的单词或符号的概念;它只是将元素或属性的文本内容表示为一个后续节点。
The ARTS XML Dictionary is a list of names initially derived from entity and attribute names of the logical view of the ARTS Data Model.
ARTSXML字典是一张名称列表,这些名称最初来源于 ARTS数据模型的逻辑视图的实体和属性名称。
In the ARTS Data Model, the entity name is often used as a prefix for attribute names.
在ARTS数据模型中,实体名称经常作为属性名称的前缀。
The ref attribute of the input element specifies what part of the model that input will store data in.
input元素的ref属性指定了该输入将把数据存储在模型中的哪个部分。
The Annotated Data Binding (the first line in Listing 2) allows bean properties to be declared as component attribute values so that the view and model are automatically kept in synch.
带注解的数据绑定(清单2中的第一行)允许将bean属性声明为组件属性值,这样视图和模型就会自动保持同步。
When transforming a logical data model to a physical data model using IDA, entity and attribute names are transformed to table and column names according to the following rules.
在使用RDA将逻辑数据模型转换为物理数据模型时,实体和属性名称根据以下规则被转换为表和列名称。
That new attribute, if not a logical-only attribute, is only created in the physical data model by Rational data Architect when you choose to transform the logical model in a physical model.
如果这个新属性不是logical -only属性,那么当您选择转换物理模型中的逻辑模型时,RationalDataArchitect只在物理数据模型中创建该属性。
This process can contribute to subsequent Attribute or data Gap Analyses in mapping data sources against target model through the defined terms.
这个过程有助于在后面的属性或数据差异分析中通过定义的术语将数据源映射到目标模型。
The Design Pattern Toolkit has several tags that enable us to access the model and use the data in our pattern. The first tag is accessing attribute data from the model
设计模式工具箱中包含一些标记,这些标记允许我们访问模型并使用模式中的数据。
A model of data mining is set up after preparation of data by means of attribute structure, and association rule algorithms are carried out. the data mining result is explained and analysed.
采用了属性构造法进行数据预处理,建立了数据挖掘模型,实现了关联规则算法,并对挖掘结果进行解释与分析。
A new fuzzy data model method has been gaven after studying the fuzzy knowledge representation. This method describes fuzzy data with fuzzy relation of attribute weight.
研究了模糊知识的表示方法,提出了一种表示模糊知识的模糊数据模型,利用属性加权模糊值来表示模糊性数据。
The paper presents a data quality assess model for relational database and defines the accuracy metric at attribute level.
针对数据库数据质量评价问题,给出了一个属性粒度的质量评价模型,定义了正确性评价指标。
A geo-spatial entity which can be organized from geometric data, symbol data, entity data, attribute data is regarded as an object to the object oriented geographical information model.
面向对象的地理信息模型以地理空间实体为对象,地理实体可以从几何数据、符号数据、实体数据、属性数据的角度来进行数据的组织。
This paper presents an approach, called inverse attribute method, to support the effective implementation of relationships of objects in object-oriented data model.
本文提出了一种在面向对象模型中有效支持联系的实现方法一反向属性方法。
Although it is easy to define the basic constructs of the ER model, it is not an easy task to distinguish their roles in building the data model. What makes an object an entity or attribute?
虽然建造基本的ER模型是很容易的,但是区别他们在建设数据库时所处的地位并不容易,什么决定了一个对象是实体还是属性呢?
The model can deal with the semantic relationships of personalized data attribute efficiently.
该模型有效地描述了个性化数据属性间的语义关系。
This model including three modules: the data pretreatment, the attribute reduction and the rule extraction, then confirms this model's feasibility using the example.
该模型包括数据预处理、属性约简和规则提取三个模块,并利用算例验证该模型的可行性。
In the data mining stage, the paper first the data in the data mining model attribute classification.
在数据挖掘阶段,论文首先对数据挖掘模型中的数据进行属性分类。
Meanwhile, database system, consisting of four databases, including document, space, model and attribute data was designed.
设计了由文档资料数据库、空间数据库、属性数据库和模型库组成的数据库系统;
An optimization method for reasoning results is presented, such as recursive grey fitting model for single sequence and attribute correlativity model for multi-dimension data.
分别在单序列时建立递进灰拟合模型,在多维数据集时利用属性相关性,对插值结果进行学习优化。
Used of the data statistics, data mining, model analysis and other methods, mainly deal with the following two questions:1. Multi-attribute associations (select) problem.
研究中主要用到了数据统计法、数据挖掘法、模型分析法等多种方法,主要解决以下两个问题:1、多属性关联(查询)问题。
Used of the data statistics, data mining, model analysis and other methods, mainly deal with the following two questions:1. Multi-attribute associations (select) problem.
研究中主要用到了数据统计法、数据挖掘法、模型分析法等多种方法,主要解决以下两个问题:1、多属性关联(查询)问题。
应用推荐