This article discusses the problems in the process of data modeling, and describes a new data model which called atomic data model.
出于这个目的,讨论了普遍的数据建模方法中存在的问题,并提出一种改进的数据模型,称之为原子数据模型。
The data architect can then associate these atomic domains to physical columns in the physical data model.
接下来,数据架构师将这些原子域与物理模型中的物理列关联起来。
The data architect then creates a domain model, along with a set of atomic domains, each describing the required data privacy masking methods for a particular domain, such as credit card data.
然后,创建一个域模型和一组原子域,每个原子域都描述特定域所需的数据隐私屏蔽方法,比如信用卡数据。
When Tom completes the domain association of the four new atomic domains, the Data Project Explorer shows four columns in the physical model having privacy masking attributes, as shown in Figure 18.
当Tom 将4 个新的原子域与对应的列关联起来之后,DataProjectExplorer 将在具有隐私屏蔽属性的物理模型中显示 4 个列,如图 18 所示。
Part II examines the problem of converting the experimentally obtained data into a model of the atomic arrangement that scattered these beams.
第二部分探讨把得到的衍射实验数据转换成原子排列模型的问题。
The line-by-line model for the accurate calculation of plasma opacity requires massive accurate atomic data to deal with the detailed absorption lines.
细致谱线模型是等离子体辐射不透明度精确计算的理论方法,涉及到很多原子物理过程,需要计算大量的、精确的原子参数。
The line-by-line model for the accurate calculation of plasma opacity requires massive accurate atomic data to deal with the detailed absorption lines.
细致谱线模型是等离子体辐射不透明度精确计算的理论方法,涉及到很多原子物理过程,需要计算大量的、精确的原子参数。
应用推荐