利用线性变换,统一给出常系数线性方程齐次通解和非齐次特解解构造定理的简化证明。
Using linear transform, the simple proof for solution of higher order linear differential equations was given.
给出了求常系数线性齐次差分方程组通解的一种方法,用一个例子说明所给方法。
This paper gives a method to obtain solution of linear homogeneous difference systems with constant coefficients. The method of this paper is illustrated by a example.
探讨了某些特殊类型二阶变系数齐次线性常微分方程的解与系数的广义关系,尝试了从理论上给出通解的一般形式和特解的系数决定式。
The thesis analyzes the relationship between Wronsky determinant and linear equation relativity of function in order to get the common solution determinant of linear differential coefficient equation.
利用常数变易法求解具有实特征根的四阶常系数非齐次线性微分方程,在无需求其特解及基本解组的情况下给出其通解公式,并举例验证公式的适用性。
Demonstrated in this paper is how the Constant-transform method, the typical method for solving differential equations of order one, is used in solving linear differential equations of order three.
利用常数变易法求解具有实特征根的四阶常系数非齐次线性微分方程,在无需求其特解及基本解组的情况下给出其通解公式,并举例验证公式的适用性。
Demonstrated in this paper is how the Constant-transform method, the typical method for solving differential equations of order one, is used in solving linear differential equations of order three.
应用推荐