主要是证明了仿齐次函数为亚齐次函数的一个充分条件。
Mainly, it proves that a sufficient condition of a parahomogeneous function is a subhomogeneous function.
该模型的生产函数是满足“新古典”条件的一次齐次函数。
In the model, the production function is assumed to be nonclassic and constant returns to scale.
由于叠加原理的破坏,主张将非线性生产函数替代传统线性齐次函数。
The traditional linear function should be displaced by nonlinear function because of the breakage of superposition principle.
给出了几乎齐次函数的一个新的刻划定理,这一刻划是齐次函数欧拉定理的拓广。
A new characterization of the almost homogeneous functions is obtained which can be considered as a natural extension of the Euler equation characterizing the homogeneous functions.
运用拟齐次函数的性质,给出了一类解析函数正规型的一个简单的初等的证明方法。
The normal form of a kind of analysis function is proved with a simple and elementary method by using the properties of semiquasihomogeneous functions.
利用平均值不等式,得到高次齐次函数的若干条件不等式,推广了低次齐次函数的相关结果。
In this paper, we through the example introduce some applications of the mean value inequality in mathematical analysis.
对于一般的非凸函数,其方向导数不具备任何凸性,可以利用一般正齐次函数的回收函数来给出它的一个上凸近似。
We research on describing preinvexity of functions in this paper by means of the density and weakly near convexity in the set.
有强迫函数作用于上的,则系统必须作为非齐次的来考虑。
With forcing functions acting, a nonhomogeneous system must be considered.
NURBS曲线方程具有三种等价形式:有理分式表示、有理基函数表示和齐次坐标表示。
NURBS curve equation has three kinds of the equivalence form, i. e. rational fraction, rational base function and homogeneous coordinate.
应用生成函数的方法求出了常系数非齐次线性递推式的显式解。
This paper gives an explicit solution to linear non-homogeneous recurrence relations with constant coefficients by means of generating function.
权函数是得自对应的齐次微分方程的一般解和完备系。
The weighted functions are obtained based on the use of completed systems of general solution of the corresponding homogeneous equations.
提出一种计算具有齐次边界条件的旋转薄壳的特征值和特征函数的精确解法。
A new exact solution is developed which enables to determine the free vibration characteristics of toroidal thin shell with homogeneous boundary conditions.
特别是利用广义格林函数证明了高阶齐次方程存在非平凡解的情况下对应的高阶非齐次边值问题存在一解的充要条件。
In particular, we use generalized Green's function to prove that the high-order nonhomogeneous boundary value problem has a solution when the associated homogeneous problem has a nontrivial solution.
在二次损失函数下,研究了增长曲线模型误差方差的非齐次二次型估计的可容许性问题。
The admissibility of non-homogeneous quadratic form estimate of variance on the growth curve model was studied under quadratic loss function.
摘要利用由三角级数和幂级数复合构成的函数项级数的有关性质,得到了一类变系数非齐次调和方程边值问题的级数解。
In this paper by using the property of Fourier series a compound series consisting of trigonometric series and power series is established.
余函数(齐次解)对应于暂态,特解对应于稳态。
Eg. The complementary function corresponds to the transient, and the particular solution to the steady state.
该方法对非齐次项属于该类函数的线性常微分方程行之有效。
This method is effective for linear ordinary differential equations whose non-homogeneous term belongs to the set described above.
给出了齐次规划问题KKT点的一个等价性质,采用对约束函数k次方的方法得到齐次规划问题的一个局部鞍点。
When the object and constraint functions are continous, it shows the relations of KKT points and local saddle-points.
本文研究一类高阶线性齐次与非齐次迭代级整函数系数微分方程解的增长性问题。
In this paper, we investigate growth problems of solutions of a type of homogeneous and non-homogeneous higher order linear differential equations with entire coefficients of iterated order.
首先在引理中得出了隐非齐次马尔可夫模型的一些性质,从而导出了隐非齐次马尔可夫模型的三元函数一类平均值的强极限定理。
At first some properties on nonhomogeneous Markov models are obtained in the lemma, then a limit theorem for the average of the three variables function of hidden nonhomogeneous Markov model is given.
主要讨论了高阶齐次线性微分方程解取小函数的点的收敛指数。
In this paper, we investigate the problem of the convergence of zeros of the solution of higher order linear differential equation to small order of growth function.
给出了一个齐次Markov骨架过程成为齐次Markov过程的充分条件及其转移概率函数。
A sufficient condition of a homogeneous Markov skeleton process being a homogeneous Markov process is given and the transition function is obtained.
主要讨论了高阶齐次线性微分方程解取小函数的点的收敛指数。
The Exponential Convergence and Boundedness of the Solutions for Functional Differential Equations;
在二次损失函数下,研究了增长曲线模型误差方差的非齐次二次型估计的可容许性问题。
We study the admissibility of the quadratic estimate for error variance in two classes of growth curve model.
利用矩阵的向量化方法,研究了带线性约束的增长曲线模型中可估函数的线性估计在非齐次线性估计类中可容许的充要条件。
In this thesis, the admissibility and general admissibility of linear estimators in growth curve model with respect to inequality restriction are considered.
利用矩阵的向量化方法,研究了带线性约束的增长曲线模型中可估函数的线性估计在非齐次线性估计类中可容许的充要条件。
In this thesis, the admissibility and general admissibility of linear estimators in growth curve model with respect to inequality restriction are considered.
应用推荐