利用有理数对实数逼近的表示方式,给出黎曼函数处处不可导的一种证明,给出单位圆周上的有理点在单位圆上稠密的证明。
Rational number can approximate to real number, use the notation of approximate one can prove Riemann function isn t differentiable anywhere, that the Rational points are dense in unit circle.
摘要利用有理数对实数逼近的表示方式,给出黎曼函数处处不可导的一种证明,给出单位圆周上的有理点在单位圆上稠密的证明。
Rational number can approximate to real number use the notation of approximate one can prove riemann function isn't differentiable anywhere that the rational points are dense in unit circle .
在构造了完备化空间之后,证明了该空间就是勒贝格可积函数空间,从而说明了黎曼积分的完备化形式是勒贝格积分。
After constrcting the perfective space prove that this space is just the space of lebes gue integratiable function thus explain that lebes gue integral is the form of the perfective riemann integral.
而由于黎曼积分具有局限性,黎曼积分只能用于连续函数类的积分。
And because of the limitations of Riemann Integration, it can only be used for continuous function.
在黎曼流形上分别给出了伪不变凸函数和弱向量似变分不等式的概念。
The definitions of pseudo-invex function and weak vector variation-like inequality on Riemannian manifolds are presented.
文章给出了一些有理函数它们的Julia集为整个黎曼球面。
The paper gives some rational functions whose Julia sets are the whole Riemann sphere.
但是,本文指出并论证了下述结论:黎曼可积函数的连续函数必定黎曼可积。
This paper has drawn and proved the conclusion that continuous function of Riemann integrable function is certainly Riemann integrable.
文章研究的是解析函数的等价命题和解析函数及其柯西—黎曼方程在解决物理学中平面场的无源无旋问题中的应用。
This paper discusses several equivalent propositions in analytic function and their application to the nonsource and irrotation problems of plane field in physics.
文章研究的是解析函数的等价命题和解析函数及其柯西—黎曼方程在解决物理学中平面场的无源无旋问题中的应用。
This paper discusses several equivalent propositions in analytic function and their application to the nonsource and irrotation problems of plane field in physics.
应用推荐