本文提出了用沃尔什级数求解高阶线性偏微分方程的一种新方法。
This paper proposes a new method of solving the high order linear partial differential equation by means of Walsh Series.
本文研究一类高阶线性齐次与非齐次迭代级整函数系数微分方程解的增长性问题。
In this paper, we investigate growth problems of solutions of a type of homogeneous and non-homogeneous higher order linear differential equations with entire coefficients of iterated order.
在本文中,研究了高阶非线性微分方程的振动性与渐近性,给出了振动的充要条件。
In this paper, we study oscillation and asymptotic behavior of solutions of higher order nonlinear differential equations, and give necessary and sufficient conditions for oscillation.
主要讨论了高阶齐次线性微分方程解取小函数的点的收敛指数。
In this paper, we investigate the problem of the convergence of zeros of the solution of higher order linear differential equation to small order of growth function.
研究一类具有连续分布偏差变元的高阶非线性中立型时滞偏微分方程,获得了方程解振动的一些新的判定准则。
The oscillations for a class of nonlinear neutral delay partial differential equations with continuous distributed deviating arguments is discussed.
研究一类具有连续分布偏差变元的高阶非线性中立型时滞偏微分方程,获得了方程解振动的一些新的判定准则。
We obtain sufficient conditions for the oscillation of all solutions of the nonlinear high order neutral functional differential equation with continuous deviating arguments.
主要讨论了高阶齐次线性微分方程解取小函数的点的收敛指数。
The Exponential Convergence and Boundedness of the Solutions for Functional Differential Equations;
主要讨论了高阶齐次线性微分方程解取小函数的点的收敛指数。
The Exponential Convergence and Boundedness of the Solutions for Functional Differential Equations;
应用推荐