高等数学课堂教学中问题情境的设置是启发式教学思想应用于实际的中间桥梁,是教学中的重要环节。
Question circumstances setting in the course of Higher Mathematics teaching is a key link between the teaching ideas of elicitation method and practical application.
本文通过对“有限与无限”、“直与曲”、“常量与变量”的剖析,揭示了高等数学中解决这些矛盾的辩证思想和方法。
Analysing "limited and unlimited", "straight and curve" and "constant and variable", the article discovers contradict dialectic ideology and methods in high mathematics.
在教学中注重对学生建模思想的培养应成为高等数学教学改革的一个重要方向。
It must become an important direction for higher mathematics teaching to develope students' concept of mathematics model-building.
把数学建模思想融入高等数学教学可以从分析处理教材、组织教学内容、教学方法和学法指导、知识应用过程等方面着手。
The application can realized by analyzing teaching materials, organizing teaching contents, giving guidance for teaching and learning methods, and applying knowledge.
下面我们就针对高等数学中的某些级数、极限和积分的计算,通过找到它们之间的联系,运用概率思想进行解答。
This article aims to inductive probability knowledge in the series, limits and integral calculation principle and illustrate the application.
函数与极限是“高等数学”的第一部分内容,而极限思想方法对学好高等数学起到重要作用。
Mathematics education is a basic education, and mathematical thinking is an important part in mathematics education.
函数与极限是“高等数学”的第一部分内容,而极限思想方法对学好高等数学起到重要作用。
Mathematics education is a basic education, and mathematical thinking is an important part in mathematics education.
应用推荐